
Wide-Field Line Ratio Analysis: High Dynamic Range Column Density Maps of the Milky Way

Peter Barnes Audra Hernandez Erik Muller Billy Schap Rebecca Pitts Sebastian Lopez Dylan Barnes Prerak Garg and Frederic Schuller and the rest of the SEDIGISM team

The Basic Problem

* How do we turn data into physics?

The Basic Problem

* Observe line emission

$$T_{\rm mb} = [S_{\nu}(T_{\rm ex}) - S_{\nu}(T_{\rm bg})](1 - e^{-\tau})$$

* Want physical quantities, like mass distribution, excitation conditions

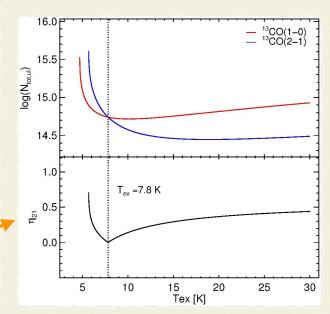
With a single line, we have I equation and 2 unknowns:

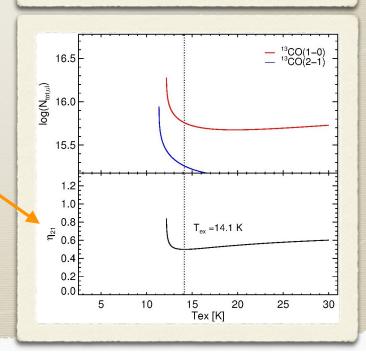
Quo vadis?

$$N = \frac{3h}{8\pi^{3}\mu^{2}} \frac{Q(T_{\rm ex})e^{E_{u}/kT_{\rm ex}}}{J_{u}(e^{h\nu/kT_{\rm ex}} - 1)} \int \tau dV$$

SEDIGISM at APEX

* With SEDIGISM, we also have J=2→1 for ¹³CO & C¹⁸O: how does this help?

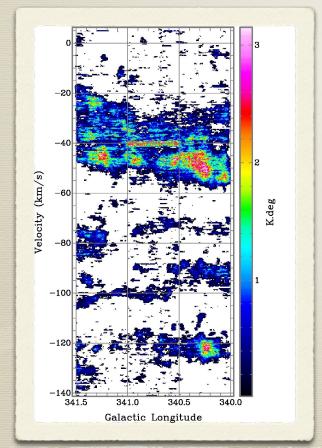

* **1st approach**: combine ¹³CO J=2→1 from SEDIGISM with ¹³CO J=1→0 from ThrUMMS:

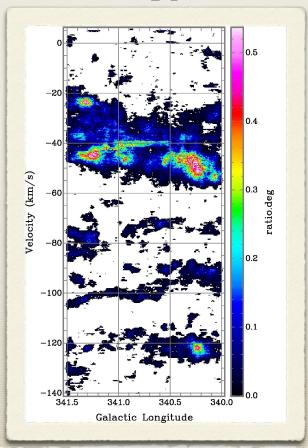

$$_{2\times} \rightarrow T_{\rm mb} = [S_{\nu}(T_{\rm ex}) - S_{\nu}(T_{\rm bg})](1 - e^{-\tau})$$

- * Then we have to iteratively solve for the 2 lines' τ and common $T_{\rm ex}$ (2 equations in 3 unknowns) by connecting them through detailed balance: $\tau_{2-1}/g_2 = (\tau_{1-0}/g_1)e^{-h\nu_{2-1}/kT_{\rm ex}}$.
- * Equivalent to iteratively solving for 2 versions of N, and matching them, as in Schuller et al 2017 (SED. Paper I)

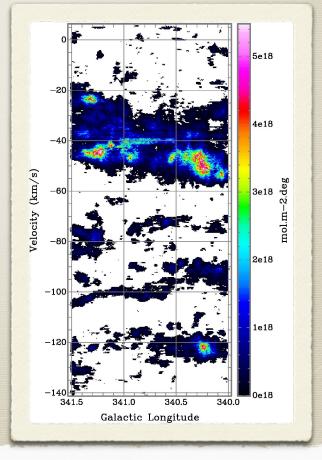
Iterative Approach

- * In Test Field (TF):
- * Form a ratio of two Ns calculated from each line, $\eta_{21}(T_{ex}) = \left| \log \left(\frac{N_{\text{tot},21}}{N_{\text{tot},10}} \right) \right|$, then find T_{ex} where η =0
- * Example 1: solvable voxel
- * Example 2: not solvable (more on this later)
- * Most voxels solvable for τ_{2-1} , τ_{1-0} , T_{ex} , and $N_{\text{total}}(^{13}\text{CO})$

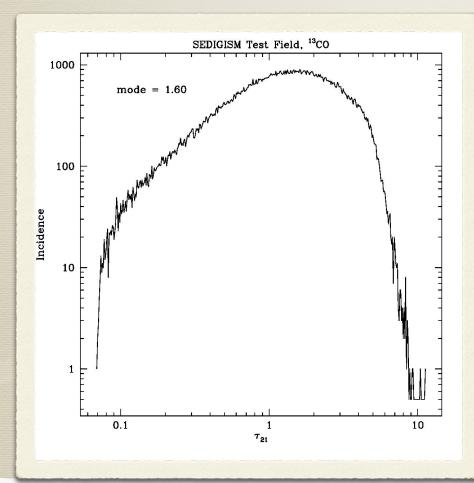


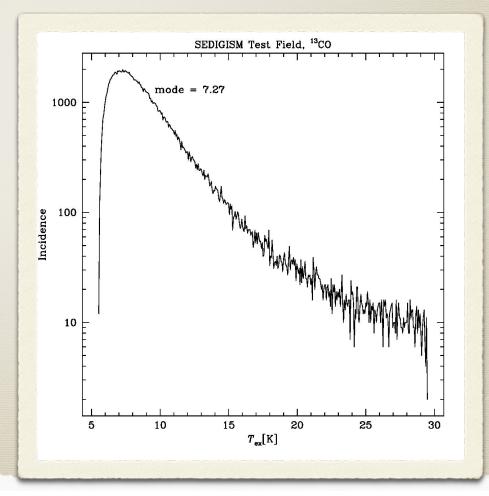

Test Field Recap

- * Again, N distribution is more clumpy than I
- * Work continuing in 4Q with Sebastian Lopez & Audra Hernandez


 $T_{\rm ex}$

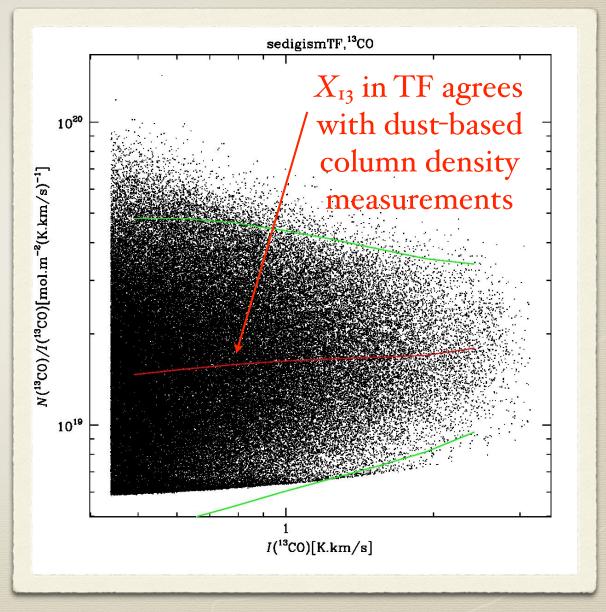
 $\tau_{2^{-}I}$




N_{total}(13CO)

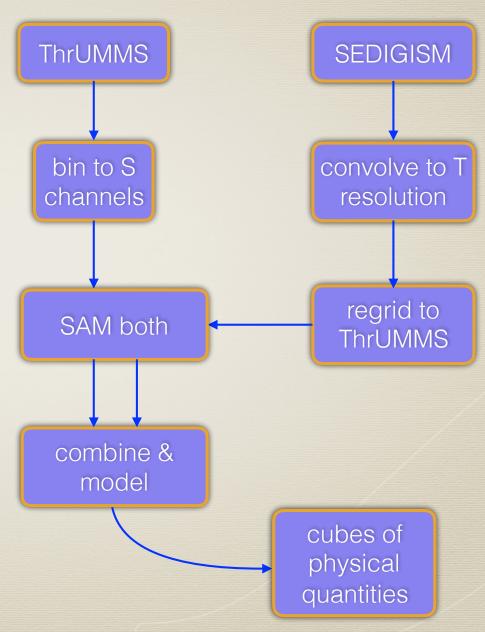
Unexpected Results

- * Most voxels are high opacity ($\tau_{2-1} = 0.4-4$) and low excitation ($T_{\text{ex}} = 6-9$ K)
- * Assuming $\tau \ll 1$ should be avoided



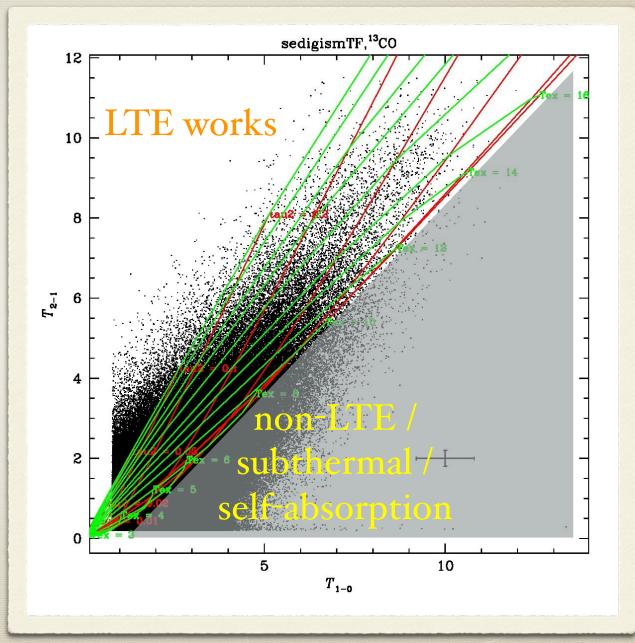
X factors and other questions

- * Can also compute


 ¹³CO *X*-factor: flat
 with *I*(¹³CO)
- * Is X_{13} constant outside the TF?

 Does it have the same value?
- * Implications for Dark Molecular Gas, and extragalactic work

Progress on DR1b


- * Work is continuing on a faster (Newton's method) and cleaner algorithm than in TF
- * Convergence remains tricky
- * First results soon (-1 month); SED Paper III (?) coming later this year

Line Ratios are ... Interesting

* There are a minority of voxels with T_2/T_1 very low

* Eventually, look at non-LTE analysis for new subthermal physics

More Applications

* 2nd approach: iteratively solve between SEDIGISM

J=2→1 ¹³CO and C¹8O lines' τ and T_{ex} (again, 2 equations in 3 unknowns)

$$\frac{T_{18}}{T_{13}} = \left[\frac{S_{18}(T_{\text{ex}}) - S_{18}(T_{\text{bg}})}{S_{13}(T_{\text{ex}}) - S_{13}(T_{\text{bg}})} \right] \frac{1 - e^{-\tau_{18}}}{1 - e^{-\tau_{13}}}$$

* Need to also assume R_{18} : will investigate how this works, given the CHaMP result that R_{18} varies... a lot!

* Work just begun with Prerak Garg, Audra Hernandez in an *l*=13° test map (1Q)

A "Simpler" Example

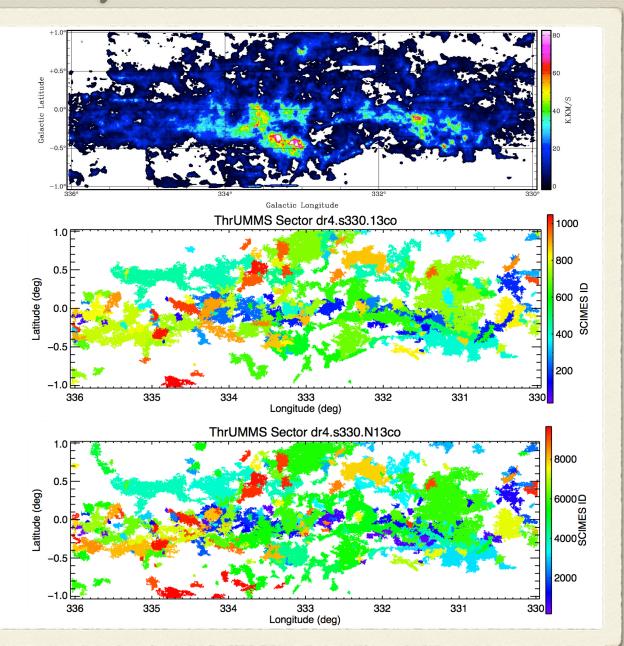
- * As in ThrUMMS and CHaMP (J=1→0):
 - * Have ¹²CO, ¹³CO, and C¹⁸O data, so 5 equations in 8 unknowns ($3\times\tau$, $3\times T_{\rm ex}$ plus abundance ratios R_{13} , R_{18})
 - * Assume single, common $T_{\rm ex}$, and $R_{\rm I3}$ = 60 (both reasonable) \rightarrow now 5 equations in 5 unknowns
 - * Final convenience: $T_{\text{ex}} = T_{\text{mb}}(^{12}\text{CO}) + 2.73$ (since $\tau_{12} >> 1$)
 - * Now solve directly:

Side benefit: in this case, column density is very HDR, since we can peel away the iso-CO layers

$$\begin{split} \frac{T_{13}}{T_{12}} &= \left[\frac{S_{13}(T_{\rm ex}) - S_{13}(T_{\rm bg})}{S_{12}(T_{\rm ex}) - S_{12}(T_{\rm bg})} \right] \frac{1 - e^{-\tau_{13}}}{1 - e^{-R_{13}\tau_{13}}} , \\ \frac{T_{18}}{T_{13}} &= \left[\frac{S_{18}(T_{\rm ex}) - S_{18}(T_{\rm bg})}{S_{13}(T_{\rm ex}) - S_{13}(T_{\rm bg})} \right] \frac{1 - e^{-\tau_{18}}}{1 - e^{-\tau_{13}}} , \\ \tau_{12} &= R_{13}\tau_{13} , \text{ and} \\ \tau_{13} &= R_{18}\tau_{18} , \end{split}$$

Physics to Come

ThrUMMS Sector:

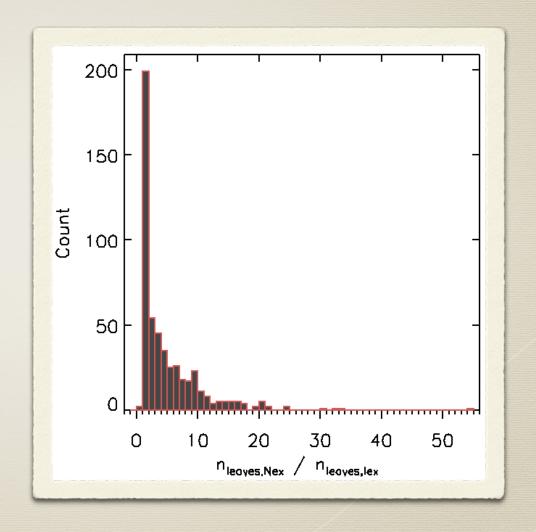

330°-336° ¹³CO (1-0)

 $(dv=-150-50 \text{ km s}^{-1})$

Intensity Based Extraction:

- 2.5σ detection limit
- 4σ minimum separation difference

Column
Density
Based
Extraction



Mass
distribution
is much
clumpier
than
emission:

Thousands of clouds!

Sensitivity to Clumpiness

- * Because of the HDR column density sensitivity, we can see more structure
- * Clumpiness is most extreme at the highest column densities, i.e. where τ >> 1

Conclusions

* SEDIGISM on APEX is/will be a major contributor to the revolution in understanding the physics of the molecular ISM

* Exciting new results coming from multi-line radiative transfer analysis over the very wide fields of SEDIGISM at APEX, plus CHaMP & ThrUMMS, others

* Final word: N-based physics is different than I-based physics. Ignoring this risks the validity of your science