# Tracing the Flow in Massive Molecular Clumps: New Results from CHaMP

#### Peter Barnes, Univ Florida

plus

Rebecca Pitts, Audra Hernandez, Stuart Ryder, Billy Schap, Erik Muller, Frank Varosi, Dan Li, Sarik Jeram, Kyle Chamblee, many others

Tracing the Flow, Windermere, 3 July 2018

#### Overview of CHaMP (Census of High- and Medium-mass Protostars)



- Started in 2002 with Nanten maps, first demographic approach to massive SF
- Unbiased Mopra survey of all massive clumps in 120 deg<sup>2</sup>, simultaneous imaging in 35 species: 86–93 GHz (data collection 2004–07) and 107–115 GHz (2009–2015)
- Resolution 37" = high spatial dynamic range, and high sensitivity 0.3–0.4 K in 0.1 km/s channels
- Follow-up work with AAT, Gemini-S, SOFIA, archival data
- Published data available

#### Results to date

- Yonekura et al 2005: first Nanten mapping of  $\eta$  Carinae GMC and cores
- Barnes et al 2010: discovery of massive global infall in BYF 73
- Zhang et al 2010: origin of radio-FIR correlation in the Milky Way
- Barnes et al 2011: first Mopra maps & HCO<sup>+</sup> clump catalogue, a vast population of starless clumps, implied long latency periods for MSFR
- Barnes et al 2013: AAT NIR signposts of MSFR, strong correlation between HCO<sup>+</sup>, Brγ dense gas → post-SF feedback indicator
- Ma et al 2013: first clump SED analysis
- Barnes et al 2016: <sup>12</sup>CO maps & clump catalogue, pressure confinement of clumps, supporting long latency periods, clumps as base unit (70-80% of mass) of GMCs
- Schap et al 2017: HCN analysis, high column/subthermal gas, confirming post-SF feedback status
- Andersen et al 2017: VLT NIR stellar content of BYF 73

## Highlights from recent papers

• Barnes, Hernandez, Muller, & Pitts 2018, ApJ, accepted:

- full iso-CO radiative transfer solutions for 36 Regions
- differential kinematics & dynamics
- directly observer mass accretion/dispersal fluxes & timescales

• Pitts, Barnes, & Varosi 2018a, MNRAS, submitted:

- FIR SED fitting and dust *T*/*N* maps for 5 Regions
- CO abundance variations
- *L*/*M* is a function of *T* alone
- clumps have only 4 morphotypes in *T*/abundance

• Pitts, Barnes, Ryder, & Li 2018b, ApJL, submitted:

• case study of one clump with SOFIA & Gemini-S

## Insights from radiative transfer



#### From line ratios to column densities

- Physical parameters spatially variable, so solve for  $\tau$  and  $T_{ex}$  per voxel via plane-parallel radxfer
- Column density depends on **both**  $\tau$  and  $T_{\rm ex}$ , compute it

directly



## Surprise! Conversion laws transformed, and resolution in 3D Matters

- More sophisticated analysis can reveal interesting trends
- \* Need to do this in a velocity-resolved manner
- \* Not doing so gives
   wrong N: many
   consequences to
   downstream science



# Apply to envelopes vs. interiors

 Compare <sup>12</sup>CO
 envelope
 material
 with interior
 N

Evaluate
 mass/
 momentum
 distributions
 separately



#### **Differential dynamics**

 Although this is just a snapshot, we see direct
 evidence of
 cloud mass
 assembly and
 dispersal

 All this points to a larger gas
 reservoir, longer
 depletion/SF
 timescales, other
 consequences



#### Another surprise

 Molecular clouds are both accreting and losing mass in a locally random way

 \* Global average timescale for accretion, across many clumps, depends on Σ :

 $\sum(t) = \sum_{mol} e^{t/16Myr}$ 

\* See B+18, arXiv: 1806.00492





#### Even more surprises

\* Use *Herschel* data to compute dust-based N<sub>H2</sub> map
 \* Derive [<sup>12</sup>CO]/[H<sub>2</sub>] abundance map: it's mostly *much lower* than expected, and varies *a lot* too!



# Temp/abundance morphotypes Abundance patterns reduce to only 4 morphotypes, which depend mainly on *T*/radiation environment



#### Yet more surprises

These types
 don't seem
 to depend
 on column
 density, but
 they do
 depend on
 T<sub>dust</sub>



# L/M traces T, not evolution

- For SED fits,  $L/M \propto T^{\beta+4}$
- *T*<sub>dust</sub> falls
   towards the
   centers of
   most clumps
- See R. Pitts
  poster 21/
  back wall,
  and P+18a
  MNRAS
  subm.



# A case study: BYF 73 (The exception that proves the rule)

- The only CHaMP clump out of 300 that is rapidly collapsing
- Most massive @ 20,000 M<sub> $\odot$ </sub>,  $\alpha_{vir} \sim 0.1$ ,  $dM/dt = 0.03 M_{\odot}/yr$ (B+2010)



• Spitzer/AAT:

## Gemini-S/T-ReCS data

 Only 8 point sources, only 6 of which are likely protostars, only 3 of which are massive, only 1 of which is detectable with ATCA



• Clump is gas-dominated, but most of this gas is focused around 1 core

# SOFIA/FIFI-LS data

- MIR 2 is most massive
   @ 200–400 M<sub>☉</sub>, but only
   1-2% of clump's mass
- Has 60% of clump's luminosity, some of which may be coming from gravitational PE release
- CII and OI lines mostly trace SF, not so much the mass
- See R. Pitts poster 21/ back wall, and P+18b
   ApJL subm.



#### Summary

- *Barnes et al 2018:* single X-factor is illusory, mass conversion follows power laws  $N_{CO} \propto I_{CO}^2 \sim \tau T_{ex}$  at full velocity resolution, averaging down to  $N_{CO} \propto I_{CO}^{-1.3}$  when velocity-integrated; overall cloud masses ~2–3x higher
- Long mass assembly times, and long clump lifetimes (~50+ Myr), now directly confirmed as gas "sedimentation" from pressure-confining envelopes, with a gradually rising star formation rate as ∑ rises and ending with a terminating crescendo of MSF
- *Pitts et al 2018a:* N<sub>H2</sub> and T<sub>d</sub> maps from FIR-SED fitting show CO abundance varies strongly across Regions and clumps, but has 4 distinct morphological types which depend strongly on T<sub>d</sub> and G<sub>0</sub> due to depletion/desorption/dissociation of CO
- *Pitts et al* 2018b: BYF 73's C<sup>+</sup>/O<sup>0</sup> ratio & MIR/FIR continuum confirm dense, high mass cloud with its massive central protostellar core as focus of infall, smooth-gas-dominated, early evolutionary state

# Final thoughts

~50-100 Myr

 Takeaways: long latency periods, dense gas tracers don't trace dense gas, emissivity ≠ column density

Long latency period

Marginally bound molecular clump forms, **stochastically** accumulates/disperses mass from larger flows, becomes **base unit** of SF

Classic HII region, molecular cloud disperses, cluster revealed

 $\sim 5 \,\mathrm{Myr}$ 

"Denser" clump forms, **pressure-stabilised** by overlying massive envelope; gas mostly **sub-thermal & opaque**, slow accumulation/ dispersal continues, *T*<sub>dust</sub> drops

> Hot core phase, "**dense gas**" tracers become bright, gas **warms, opacity drops**

> > $\sim 1 \text{ Myr}$

Lower mass protostellar cores form, gas inflows help maintain turbulence **but species deplete**; **cloud cools**, appears "quiescent"

~0.3 Myr

Low- & mediummass SF **accelerates** during last few Myr

Final, rapid mass inflow, massive protostar(s) & protocluster form, Tdust rises