Physical Conditions and Star Formation in Cluster-Forming Molecular Clumps

Peter Barnes University of Florida with Billy Schap, Tony Ordonez (UF) and Adam Ginsburg (ESO)

AASTCS4: Workshop on Dense Cores, Monterey CA, 27-30 July 2014

2/15

The Problem of Massive SF

- Milky Way is ideal local calibrator for tracers of massive star/cluster formation seen in other galaxies and to high redshift, but...
- Systematic MW surveys of massive star formation/cluster formation difficult because of rarity => large distances, also short timescales, complex phenomenology
- Typically plagued with selection effects, small sample size, uniformity, limited fields of view
- Need uniform, wide sky coverage, high resolution, AND multiple wavelengths
- Started CHaMP in 2002: new results address these issues...

What is CHaMP?

The Galactic Census of High- and Medium-mass Protostars

- Based on Nanten maps (PIs Yonekura, Fukui)
- An unbiased multi-wavelength Galactic Plane survey (20°×6°) of a complete population (303) of massive, dense, parsec-scale molecular clumps
- At 3mm with Mopra (2004–2012): simultaneous maps of MANY molecular tracers
- In NIR+MIR (2007–2013) with AAT (Stuart Ryder), CTIO (Krista Romita), Warm Spitzer

NIR-narrowband summary

6/33

- HCO+/N₂H+ ratio seems correlated with ionising flux from a clump's embedded MYSO population (cf Meyer & Turner 2012 results for Maffei 2)
- HCO⁺, Brγ, and H₂ seem to signify a late-stage surge in massive star/cluster formation and photon-driven evolution
- Supports picture of long-lived clumps terminated by MSF
- N₂H⁺ seems a better tracer of pre-cluster cold gas
- "Dense gas" tracers do not trace a homogeneous population of clouds!!!

What about column densities?

5×104

• Simple radiative transfer analysis:

$$N_{HCN} = 9.0 \times 10^{15} m^{-2} \frac{Q(T_{ex}) e^{E_{up}/kT_{ex}}}{1 - e^{-hv/kT_{ex}}} \int \tau \, dV_{km/s}$$

- Normally use $J_b = (J_{ex}-J_{bkgd})(1-e^{-\tau})$ and $\tau \ll 1$ to estimate $\tau \sim J_b/J_{ex} \sim T_b/T_{ex}$, and obtain N from $W = \int T_b \, dV$ and T_{ex} from other methods (sometimes assumed)
- Hyperfine-split lines give τ and T_{ex} directly (also V_0, σ_V) assuming only that HF ratios are in LTE: gives N without further assumptions or cross-calibration uncertainties
- Then get mass from abundance, or vice versa

HCN hyperfine results

 $e^{-x/\tau}$

 $\partial f/\partial x$

- Convert to mass column assuming $X_{HCN} = 10^{-9}$ (same as X_{HCO^+}): $\Sigma(M) = 24,000$ or 37,000 M_{\odot}
- BUT we can measure N_{HCN} in each pixel without assuming a conversion from W, and sum these to get a total (mass) column: actual $M_{tot} = 57,000 M_{\odot}$!
- This is $\sim 2 \times$ naïve "W methods" because of large areas with low W, low T_{ex} , high τ , and yet high N. (Note that this is an overall result: some clumps are much more massive, some actually less, than with W methods.)
- cf. mass of these clumps as measured by $HCO^+ \sim 16,000 M_{\odot}$ But masses must be the same $\implies X_{HCN} \sim 4^*X_{HCO^+}$

Applications & Implications

- Can use this information to obtain self-consistent relative abundance maps between HCO+ and HCN (and other species): strong constraints on chemical models
- But more significantly....
- Mass estimates that rely on simple W scalings may substantially underestimate the gas mass in these clumps!
- Implies there is a lot more "dense" gas in massive clumps not engaged in massive star formation: extends HCO+ results
- **Consequences** for clump stability, calibration of K-S relations, among many other things....

