N-Body Simulations of Narrow Eccentric Ringlets

Joseph M. Hahn Space Science Institute Austin, TX

> Joseph Spitale PSI Tucson, AZ

Cassini image of narrow 25km-wide Huygens ringlet, 200km beyond outer edge of B ring

The following describes an N-body algorithm that can simulate disturbances in planetary rings that are of low azimuthal wavenumber m, such as:

- scalloping at outer edge of A and B rings, m=2 and 7,
- spiral density waves with m = a few,
- libration of narrow eccentric ringlets. m = 1

One must model all 360° in ring to simulate these phenomena, cannot simulate a small patch in the ring.

Fortunately the radial width of the region of interest is small, $\Delta r \sim 100$ km while orbit radius is $r \sim 10^3 \Delta r$.

- all particles are close in the radial sense,
- gravity that one streamline in the ring exerts on a particle is $A_g=-2G\lambda/\Delta r$, where $\lambda=$ linear density (eg. GT79, BGT83, BGT85)

This N-body integrator uses trace particles to map streamlines within ring:

- no gravitational scattering when a particle nears a streamline,
- runs requires only $N \sim 1000$ particles,
- runtimes are minutes to hours on PC.

Each trace particle also represents a patch within the ring,

- ring surface density is $\sigma=\lambda/\Delta$,
- radial acceleration due to ring pressure is $A_p = -(\partial p/\partial r)/\sigma$
- viscous acceleration $A_{
 u} = -(\partial F_{
 u}/\partial r)/r\sigma$ where the ring's viscous angular momentum flux is $F_{
 u} = -\nu\sigma r^2(\partial\Omega/\partial r)$
- model also accounts for pressure drop and the large viscous torque at a ring's sharp edge

The code is a symplectic integrator, uses the kick-drift scheme of SYMBA and MERCURY (Duncan at al 1998, Chambers 1999).

- kick $\Delta v = A \Delta t$ is due to perturbing acceleration A during timestep Δt
- oblateness effects occur during the drift step, which is *epicyclic*, not keplerian:
 - mean anomaly drifts (advances) as $\Delta M = \kappa \Delta t$
 - longitude of peri advances as $\Delta ilde{\omega} = (\Omega-\kappa)\Delta t$ where
 - Ω,κ are the angular, epicyclic frequencies for orbits around oblate planet

Coordinates & velocities are related to epicyclic orbit elements via

 $r = a - ea\cos(M) + \dots \qquad \theta = \tilde{\omega} + M + 2e(\Omega/\kappa)\sin(M) + \dots$ $v_r = ea\kappa\sin(M) + \dots \qquad v_\theta = a\Omega + ea\Omega\cos(M) + \dots$

(from B-R & Longaretti 1994).

Narrow eccentric ringlets

Note that planetary oblateness drives differential precession, which would cause a narrow ringlet to lose its eccentric shape in only ~ 100 yrs,

- but GT79 showed that ring gravity can oppose differential precession, provided the ringlet has a positive eccentricity gradient e' = a(de/da)
- BGT83 show that the ringlet is in static equilibrium (streamlines in ringlet show no relative motion) when $e' \simeq 16 e J_2 (M_p / \pi \sigma a^2) (R_p / a)^2 (\Delta a / a) \equiv e'_{eq}$,
 - and that a ringlet that is displaced from equilibrium will librate with period $T_{
 m lib}=(M_p/\pi\sigma a^2)(\Delta a/a)T_{
 m orb}$

Meanwhile, JS has been using Cassini to monitor the Huygens ringlet for several years, and it is clearly not in static equilibrium...

- so I am using N-body simulations as a guide to determine what Huygens is doing:
 - librating,
 - circulating
 - might have freely precessing modes,
 - experiencing radial oscillations,
 - or doing something else...

N-body simulation of a librating Huygens ringlet

- model ringlet is composed of $40 \times 20 = 800$ trace particles
- narrow, $\Delta a = 20$ km
- modest eccentricity, $e=2.4 imes10^{-4}, er\simeq 30~{
 m km}$
- $\nu = 0$, so no radial spreading
- heavy, $\sigma = 100$ gm/cm², for fast libration
- initial e' = 0.4, for dramatic effect

Trajectories through this phase space can resemble a figure-8, due to e' changing sign.

This occurs when the libration amplitude is large, $e'_{max}\gtrsim 2e'_{eq}$.

Width-radius plots

convenient way to compare models to ringlet observations

- periapse is on left, apoapse on right
- when $e' = 0 = \Delta \tilde{\omega}$ (ie ringlet isn't librating) then ringlet width is constant
- when e' > 0 and $\Delta \tilde{\omega} = 0$, ring is widest at apoapse
- when e' < 0 & $\Delta \tilde{\omega} = 0$, ring is widest at periapse
- when $e' = 0 \& \Delta \tilde{\omega} \neq 0$, wider near quadrature

- cycle repeats every half-libration
- points = simulated ringlet's w(r), sampled at random times and longitudes

a librating ringlet fills a box in width-radius plot

Huygens' observed width-radius

Cassini has monitored Huygens for several years JS has extracted ringlet edge-radii and longitudes from hundreds of ISS images, and produced this w(r) plot seen in grey

- a librating ringlet model can fill the observed box of grey width-radii data
- libration amplitude $e'_{
 m max}=0.5$
- this sim's $\sigma=50~{
 m gm/cm^2}$

Simulated and observed width-longitude plots

- plots of width-longitude $w(\theta)$ for a librating ringlet always show an m = 1 shape where $w(\theta) \sim \cos \theta$
- but Huygen's $w(\theta)$ exhibits a prominent m = 2 pattern

simulation of free m = 2 modes in Huygens

- an unforced m = 2 disturbance is planted in Huygens at time t = 0
- m = 2 mode sloshes back & forth across ringlet, possibly as spiral wave
- model does fill the observed w(r) box, and produces m=2 shape in $w(\theta)$
- $oldsymbol{R}_2$ at outer edge is \sim twice inner edge

Huygens' observed width-longitude relationship

- Huygens' $w(\theta)$ does show a prominent m = 2 pattern
- but this pattern is oriented towards the *Sun*:
 - Huygens is widest towards
 Saturn's shadow
 - and also wider towards the solar longitude
 - m=2 amplitude shrank with solar elevation $|B_{\odot}|$
 - mean width shrank by \sim third
- evidently Huygens is *heliotropic* (Hedman et al 2010), but with some interesting distinctions

Keep in mind that JS is measuring edges & widths of the bright, *optically thick* part of Huygens.

If Huygens is heliotropic, then β for an optically thick patch in ring is

$$eta = rac{\mathsf{RP}}{\mathsf{gravity}} \propto rac{\mathsf{projected area of patch}}{\mathsf{patch mass}} \propto rac{\sin|B_{\odot}|}{\sigma_d}$$

(rather than the usual $eta \propto 1/
ho R$ in optically thin ring)

The patch's forced eccentricity (from Hedman et al) is

$$e_f~\simeq~eta\Omega/\dot{ ilde{\omega}}_{obl}\sim 3 imes 10^{-7}/\sigma_d$$

where σ_d is dust surface density in cgs units and $\beta = Q_{pr} L_{\odot} (r/r_{\odot})^2 \sin |B_{\odot}| / 4\pi c \sigma_d GM \sim 3 \times 10^{-9} / \sigma_d$

The epicyclic amplitude due to radiation pressure is $R_{rp} = ae_f = 0.031 \text{km} / \sigma_d \sim 10 \text{km}$ $\Rightarrow \sigma_d \sim 0.003 \text{ gm/cm}^2$ $m_d = \sigma_d A_d \sim 6 \times 10^{14} \text{ gm}$ equivalent solid body radius $R_e \sim 0.7 \text{ km}$ Reality check:

dust optical depth is $au \simeq \sigma_d/
ho R_1 \sim 60/R_{\mu m}$ where $R_{\mu m}$ is typical dust size in microns

 \Rightarrow Huygens' dust is optically thick when $R_{\mu m} \lesssim 60 \; \mu m$

Q: why does Huygens' $w(\theta)$ show m = 2 shape, when plots of $r(\theta)$ for the heliotropic Charming ringlet (Hedman et al) shows m = 1?

A: dust produce by Huygens' parent bodies have their parents' initial r, v at the moment of formation, but this fresh dust also suddenly feels RP, resulting in orbits whose free e is comparable to the forced e_f that is due to RP

- this causes dust orbits to *circulate* about their forced orbit, rather than librate
- these circulating orbits are still preferentially oriented to & away from the Sun
- this circulation will make the dust ring widest at the solar longitude and 180° away, resulting in an m=2 shape in $w(\theta)$
- or so I think. Need to confirm this by putting RP into the model.

Findings for Huygens

- plots of Huygens observed w(heta) shows that Huygens is disturbed, with $\Delta w(heta) \sim \pm 10$ km
- this disturbance is not due to libration about equilibrium, because the observed $w(\theta)$ shows an m=2 shape
- the disturbance in Huygens is also not due to free m=2 modes sloshing across the ringlet via self gravity
 - because the observed m=2 pattern is oriented with the Sun, and its amplitude varies with solar elevation $|B_{\odot}|$
- this indicates that Huygens is an optically-thick ringlet-shaped cloud of dust that is generated by unseen parent bodies
 - this dust is heliotropic, and its epicyclic response to sunlight varies as $R \propto |\sin B_{\odot}|/\sigma_d$
 - $R\sim 10$ km implies $\sigma_d\sim 0.003$ gm/cm 2 and $m_d\sim 6 imes 10^{14}$ gm
- other ringlets and sharp-edged rings might also be dusty, and so might also exhibit these heliotropic behaviors at their edges, too
 - detecting these heliotropic disturbances in other ring-edges will provide a means of measuring the ring's dust content

Libration period

- libration period $T_{lib} \propto \sigma^{-1}$, predicted by BGT83
- if you can observe libration, you can infer ringlet σ
 - will likely need $\sigma \gtrsim 50~{
 m gm/cm^2}$

The equilibrium point

Level curves for the Huygens ringlet

- level curve = polar plot of $e'(\Delta \tilde{\omega})$ over time, from N-body sim's of Huygens at various libration amplitudes
- left plot zooms in on center of right figure
- black dot just right of origin is the GT79 equilibrium point
 - low amplitude libration $0 < e' \lesssim 2 e'_{eq}$ have teardrop-shaped level curves
 - high amplitude librations are figure 8s
 - ringlet evolves along a level curve with speed $\propto\sigma$

B ring model

• $\sigma = 230 \text{ gm/cm}^2$