Extraterrestrial Snowballs from the Solar System's Outer Frontier Joe Hahn PLUTO NEPTUNE JUPITER URANUS SATURN

What is a comet?

comet = dirty snowball, composed of:

- mostly water ice + trace CHON:
 - CO, CO₂, CH₃OH, HCN, NH₃ . . .
 - plus dust
- Note that comets carry the essential ingredients for organic chemistry
 - some comet scientists argue that comet impacts delivered chemistry that to started life on early Earth
 - but this claim is still being investigated & debated

Comet Wild–2 photographed by Stardust

What do comets have tails?

- comets travel in wide, looping orbits about the Sun
- when $r \lesssim 2$ AU of Sun, their icy surfaces sublimate (eg., boils off)
 - releases gas & dust into coma, $R \sim 10^5~{
 m km}$ cloud
 - solar wind & radiation sweeps gas & dust into tail $\ell \sim 10^{6 \text{ to 7}} \text{ km}$
 - all this from a comet having a typical size $R \sim 1~{
 m km}$
- most comets live beyond r > 2 AU, where they are inactive, so they are dark and unseen...

Why are comets interesting?

- comets are pristine remnants left–over from when planets formed
- their chemistry tells us the composition of that initial planet-forming 'cradle'
- that 'cradle' = solar nebula
 - the disk of gas & dust that formed concurrent with the young Sun
- cometary orbits tell us about the dynamical evolution of the solar nebula
 - ie, how the solar nebula's dust coagulated into 9 planets
 + asteroids + comets

artist's solar nebula (above) & HD 141569

Comets & Planet Formation 101

- Planet formation is a byproduct of star formation
 - first, an interstellar cloud of gas & dust collapses due to its gravitational self-attraction
 - $* \sim 99\%$ of the cloud forms young Sun
 - * $\sim 1\%$ of the cloud forms a disk orbiting the Sun (consequence of *L* conservation)

collapsing cloud forms star + disk

- dust grains are concentrated in the solar nebula disk
 - many grains collide, & some stick to form larger objects
 - over time, dust grow → planetesimals, which are the building blocks of the planets

cartoon showing growing planetesimals

- regions where $m{r} \lesssim m{5}$ AU, the nebula temperature $m{T} \gtrsim m{200}$ K
 - these planetesimals are rock-rich, ice-poor (too warm!)
 - * they will later collide & form the rocky terrestrial planets (M,V,E,M)
 - * any left-over planetesimals will become asteroids that live at $r\sim 3$ AU
- ullet where $r\gtrsim 5$ AU & $T\lesssim 200$ K
 - these cooler planetesimals are ice-rich
 - * they will form the cores of the gas giant planets (J,S,U,N)
 - * any left-over planetesimals will become comets in Kuiper Belt & Oort Cloud

- computer Nbody simulations have confirmed these planetformation theories
 - show that protoplanetary cores do form from swarms of smaller planetesimals
 - however this is only *partial* confirmation; they have not been confirmed by astronomical observations
 - that must await for later generation of telescopes to observe *in—situ* planet formation

AB Aurigae

Formation of the Giant Planets

- when the giant planets' cores achieve $M_{core} \sim 10 \ M_{\oplus}$, they start to accrete gas directly from solar nebula
 - important, Jupiter is $\sim 90\%$ gas
 - observations show that disk's dissipate in $au_{disk} \sim 10^{6$ to 7</sup> years
 - implies that giant-planet formation must be complete by time $t < \tau_{disk}$.

simulation of Jupiter's gas accretion

Endgame—Final Cleanup

- initial stages of planet formation provides you with:
 - 4 terrestrial planets
 - 4 giant planets
 - lots of debris orbiting between and beyond the planets
- thus the final stage involves cleaning the SS of this residual debris
- Nbody simulations show that the giant planets are effective at:
 - accreting some of this debris
 - gravitationally scattering some debris into wide orbits $r \sim 10^4 \ {
 m AU}$
 - or ejecting debris from the Solar System

Nbody simulation of final cleanup

What is an Nbody Integrator?

very useful code used to study dynamical systems

begin loop over all times t_n

begin loop over all particles i

 $egin{aligned} \mathbf{a}_{ij} &=& rac{Gm_j}{r_{ij}^2} \hat{\mathbf{r}}_{\mathrm{ij}} = ext{ i's acceleration due to j} \ \mathbf{a}_i &=& \sum_j \mathbf{a}_{ij} = ext{ i's total acceleration} \ & ext{ as time advances as } t_n o t_n + \Delta t \end{aligned}$

 $\Delta v_i = a_i \Delta t =$ i's velocity kick

end loop over all particles i

end loop over all times t_n

⇒Nbody integrator 'kicks' particles along their trajectories

- these same Nbody simulations show that the final cleanup also causes the orbits of the planet's to *migrate*
- this is due to an angular momentum exchange with the debris-disk
 - the outer giant planets acquire
 L from nearby planetesimals
 - early planets' orbits were *mobile*, & not fixed!
 - Neptune's orbit probably expanded $\sim 50\%,$ from $20 \rightarrow 30~\text{AU}$

Nbody simulation of planet migration

Is there Evidence for Planet Migration—or is this all a Fairy Tale?

The evidence is preserved in the Kuiper Belt:

Nbody simulations show that as Neptune migrates outwards,

- Neptune's resonances capture KBOs
 - this drags the captured KBOs outwards
 - pumps up their eccentricities e
- astronomers have detected many KBOs at Neptune's 3:2, 5:3, 2:1, 5:2, etc.
 - good agreement is regarded as strong evidence for Neptune's migration

Where Do Comets Come From?

- comets slowly trickle out of 2 reservoirs, then get tossed about the Solar System by the giant planets
 - low-inclination comets
 come from Kuiper Belt
 - high–inclination comets come from Oort Cloud
 - most comets are dark and invisible since $r \gg 2$ AU
 - only the lucky few reach $r \lesssim 2$ AU, become warm and active enough to be *visible*

Summary

- Comets and asteroids are ancient relics—debris that was left–over from when the planets first formed.
- the composition of comets preserve important clues about the initial conditions (namely, temperature & chemistry) in the early planet-forming solar nebula
- of particular interest to me is the dynamics of the Kuiper Belt and the Oort Cloud

- the Kuiper Belt and the Oort Cloud are sources of the 'active' comets we see at $r \lesssim 2$ AU
- Kuiper Belt also provides insight into the early history of the outer Solar System
 - dynamical structure observed in the Kuiper Belt indicates Neptune's orbit expanded $\sim 50\%$ during the 'final cleanup' stage
 - this probably happened during the Solar System's first $t \sim 10^{7\,{
 m or}\,8}$ years

• Kuiper Belt studies may help us understand dust-disks observed at other stars

HST image of dust–disk orbiting β Pictoris