The Secular Evolution of the Primordial Kuiper Belt

Joseph M. Hahn (LPI)

March 20, 2003
What Happened to the Kuiper Belt?

- KBO orbits indicate that some process stirred up the KB
- Neptune’s outward migration does explain the 3:2.
 - but does not account for high i’s
 - nor the low-q KBOs in the Scattered Disk.

* Gomez (2003) showed that high e, i Scattered KBOs can ‘invade’ the Main Belt, but $\varepsilon \sim 0.001$.
- will investigate more efficient processes
The Curious KBO Inclinations

- Main Belt has bimodal i’s (Brown 2001)
 - $i \sim 2^\circ$ (dynamically cold, flat disk)
 - and $i \sim 20^\circ$
 (a hotter halo of KBOs?)

- again, Gomez’ ‘invasion’ of the Main Belt can explain the bimodal i’s, but $\varepsilon \sim 0.001$

- I’ll explore a more efficient mechanism for stirring up the KB—possibly too efficient?
Secular Evolution of the Kuiper Belt

- secular perturbations are the constant or low–frequency gravitational forces exerted by a perturber

- of particular interest are secular resonances, which are sites where a perturber’s precession rate matches a small body’s:
 - large e’s are excited where $\dot{\omega}_{\text{particle}} = \dot{\omega}_{\text{perturber}}$
 - large i’s are excited where $\dot{\Omega}_{\text{particle}} = \dot{\Omega}_{\text{perturber}}$

- in a gravitating disk, this e–disturbance can propagate away from resonance as a spiral density wave [aka, apsidal wave (Ward and Hahn 1998)].

- the i–disturbance can propagate away from resonance as a spiral bending (or nodal) wave (Ward and Hahn 2003).
The Rings Model

- note that the secular evolution of a system of point-masses is identical to that of gravitating rings (e.g., Murray and Dermott 1999).
- treat a disk of numerous small bodies as a nested set of interacting rings of mass m_j, orbits $(a_j, e_j, i_j, \tilde{\omega}_j, \Omega_j)$ and thickness h_j due to their particles dispersion velocities c_j.
- the planets are thin $h_j = 0$ rings.
- evolve the system as per the Lagrange planetary equations
 - apply the well-known Laplace–Lagrange solution to obtain the system’s secular evolution
 - note, however, that the rings’ finite thickness h softens their gravity, which in turn requires softening the solution’s Laplace coefficients over the scale h/a.
WKB Analysis

- A WKB solution (e.g., an approximate solution) to the planetary equations yields the properties of these waves:
 - Two types of apsidal density waves:
 * Long waves with wavelength $\lambda_L \propto M_{KB}$
 * Short waves with wavelength $\lambda_S \lesssim 10h$
 - There are only long nodal bending waves with wavelength $\lambda_L \propto M_{KB}$

- Apsidal density waves propagate between a resonance and the Q–barrier, which lies where h exceeds the threshold

$$h_Q \approx 0.3 \frac{M_{KB}}{M_{\text{Sun}}} \left| \frac{n}{\Omega_{\text{pattern}}} \right| a$$

- If long density waves encounter a disk edge or a Q–barrier, they reflect as short density waves.

- Nodal bending waves propagate between resonance and the disk edge, or else they stall where $h \approx 3h_Q \iff \text{New!}$
Simulation of Apsidal Density Waves in a $M_{KB} = 10 \, M_\oplus$ Kuiper Belt with $h = 0.01a$
Summary of Apsidal Density Waves in the KB

- simulated Belt’s have masses $M_{KB} = 30$ to $0.2 \, M_\oplus$ (e.g., the Belt’s primordial mass to its current, eroded mass) and $h = 0.002a$

- density waves reflect at the disk edge at 70 AU or at a Q–barrier.
 - reflected short waves are nonlinear, ie., $\Delta \sigma/\sigma \sim 1$

- the giant planets deposit $\sim 0.5\%$ of their e–AMD into the disk in the form of spiral density waves.
 - consequently, larger e’s get excited in lower–mass disks
 - waves excite large e’s in low–mass disks, $e \sim 0.3$ for $M_{KB} \sim 0.2 \, M_\oplus$
 - but this requires a very thin disk, $h \sim 0.002a$
• the giant planets deposit $\sim 10\%$ of their i–AMD into the disk in the form of spiral bending waves.

 – again, larger i’s get excited in lower–mass disks

• bending waves also reflect at the disk edge at 70 AU or else they stall where $h \gtrsim 3h_Q$

 – note the low i’s interior to the stall–zone
Implications for the Primordial Kuiper Belt

- when the KB was still young and quite massive, $M_{KB} \sim 30 \ M_\oplus$, then low-amplitude apsidal density waves ($e_{\text{max}} \sim 0.02$) and nodal bending waves ($i_{\text{max}} \sim 0.5^\circ$) were sloshing about the KB.

 - wave propagation times were short,

 $$T_{\text{prop}} \sim 10^6 \left(\frac{\Delta a}{30 \ \text{AU}} \right) \left(\frac{M_{KB}}{30 \ M_\oplus} \right)^{-1} \ \text{years} \quad (2)$$

 - the density waves eventually reflect and return as nonlinear short waves having $\Delta \sigma / \sigma \sim 1$ which dominate the Belt’s surface density structure

 - there was no localized excitation of e’s and i’s since there are no resonances in this massive Belt.
Implications for the Current Kuiper Belt

- over time, gravitational stirring by large KBOs increased the disk thickness \(h \) while collisional erosion decreased \(M_{KB} \rightarrow 0.2 \, M_\oplus \)

- stirring/erosion draws the \(Q \)-barrier and the stall–zone inwards to the secular resonances at \(\sim 40 \, \text{AU} \) which ultimately shuts off wave action

- if stirring/erosion happened quickly, in less than \(T_{\text{prop}} \sim 50 \times 10^6 \) years (the time for waves to propagate out to the Main Belt) then wave–action did not excite the KB \(\Leftarrow \text{least exotic outcome} \)

- but if the stirring/erosion timescale \(\geq T_{\text{prop}} \), then bending waves with \(i_{\text{wave}} \sim 10^\circ \) would have destroyed the Main Belt’s low \(i \sim 2^\circ \) component \(\Leftarrow \text{not allowed} \)

- so if bending waves did get into the Main Belt, they must have stalled far downstream

- if this distant stall–zone slowly migrated inwards to \(\sim 50 \, \text{AU} \) due to KB erosion, this would have terminated the Main Belt at \(\sim 50 \, \text{AU} \) by lofting the more distant KBOs into high \(i \) orbits \(\Leftarrow \text{a bit exotic, but does agree with observations} \)
alternatively, waves could have avoided destroying the Main Belt by propagating into a more distant reservoir of as–yet–unseen KBOs orbiting beyond 50 AU
– however many KB astronomers object to this utterly speculative scenario...