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What Happened to the
Kuiper Belt?

e KBO orbits Indicate that some

process stirred up the KB

Neptune’s outward migration does
explain the 3:2.

— but does not account for high i’'s
— nor the low-¢g KBOs in the
Scattered Disk.

x Gomez (2003) showed that high
e, 1 Scattered KBOs can ‘invade’
the Main Belt, but £ ~ 0.001.

will  investigate more efficient
processes
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The Curious KBO Inclinations
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Secular Evolution of the Kuiper Belt

secular perturbations are the constant or low—frequency gravitational forces
exerted by a perturber

of particular interest are secular resonances, which are sites where a perturber’s
precession rate matches a small body’s:
— large e’s are excited Where Wparige = Werturber

— large i's are excited where Quaricie = perturber

In a gravitating disk, this e—disturbance can propagate away from resonance as
a spiral density wave [aka, apsidal wave (Ward and Hahn 1998)].

the i—disturbance can propagate away from resonance as a spiral bending
(or nodal) wave (Ward and Hahn 2003).



The Rings Model

e note that the secular evolution of a system of point-
masses is identical to that of gravitating rings
(e.g., Murray and Dermott 1999).

e freat a disk of numerous small bodies as a

nested set of interacting rings of mass m;, orbits

(aj,ej,i,w;5,8;) and thickness h; due to their
particles dispersion velocities c;.

e the planets are thin h; = 0 rings.

e evolve the system as per the Lagrange planetary equations

— apply the well-known Laplace—Lagrange solution to obtain the system’s
secular evolution

— note, however, that the rings’ finite thickness & softens their gravity, which in

turn requires softening the solution’s Laplace coefficients over the scale h/a.
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WKB Analysis

a WKB solution (e.g., an approximate solution) to the planetary equations yields
the properties of these waves

— two types of apsidal density waves:
x long waves with wavelength A\;, «x Mkp
+ short waves with wavelength Ag S10A

— there are only long nodal bending waves with wavelength A\, o<« Mg g

apsidal density waves propagate propagate between a resonance and the -
barrier, which lies where h exceeds the threshold

Mgkg
ho ~ 0.3
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If long density waves encounter a disk edge or a ()—barrier,
they reflect as short density waves

nodal bending waves propagate between resonance and the disk edge,
or else they stall where h >~ 3hg < New!



Simulation of Apsidal Density Waves
iIna Mxgp = 10 Mg Kuiper Belt with ~ = 0.01a

time = 1.50x10° years Ao/a
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e Simulated

Summary of Apsidal Density Waves in the KB

Belt's have masses
Mkp 30 to 0.2 Mg (e.g., the
Belt’s primordial mass to its current,
eroded mass) and A = 0.002a

density waves reflect at the disk edge
at 70 AU or at a (Q—barrier.

— reflected short waves are

nonlinear, ie., Ao /o ~ 1

the giant planets deposit ~ 0.5% of
their e~AMD into the disk in the form
of spiral density waves.

— conseqguently, larger e’s get excited
In lower—mass disks

— waves excite large e’s in low—mass
disks, e ~ 0.3 for Mg ~ 0.2 Mg

— but this requires a very thin disk,
h ~ 0.002a
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Summary of Nodal Bending Waves in the KB

e the giant planets deposit ~ 10% of
their i—~AMD Into the disk in the form  “»
of spiral bending waves. °
5 10.0
— again, larger i's get excited in
lower—mass disks x
_E
e bending waves also reflect at the disk
edge at 70 AU or else they stall =< '
where h Z3hg -
— note the low ¢'s interior to the .
stall-zone 0.1
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Implications for the Primordial Kuiper Belt

e when the KB was still young and quite massive, Mxgp ~ 30 Mg, then low—

amplitude apsidal density waves (en.x ~ 0.02) and nodal bending waves
(imax ~ 0.5°) were sloshing about the KB.

— wave propagation times were short,

ACL MKB -
Toop ~ 10° (30 AU) (30 M@) years (2)

— the density waves eventually reflect and return as nonlinear short waves having
Ao /o ~ 1 which dominate the Belt's surface density structure

— there was no localized excitation of e’s and 7’'s since there are no resonances
In this massive Belt.



Implications for the Current Kuiper Belt

e over time, gravitational stirring by large KBOs increased the disk thickness A while
collisional erosion decreased Mg — 0.2 Mg

— stirring/erosion draws the (Q-barrier and the stall-zone inwards to the secular
resonances at ~ 40 AU which ultimately shuts off wave action

e if stirring/erosion happened quickly, in less than T}, ~ 50 x 10° years
(the time for waves to propagate out to the Main Belt) then wave—action did not
excite the KB « least exotic outcome

e but if the stirring/erosion timescale > T,,,,, then bending waves with ., ~ 10°
would have destroyed the Main Belt's low 7 ~ 2° component < not allowed

e so If bending waves did get into the Main Belt, they must have stalled far
downstream

— If this distant stall-zone slowly migrated inwards to ~ 50 AU due to KB erosion,
this would have terminated the Main Belt at ~ 50 AU by lofting the more distant
KBOs into high ¢ orbits < a bit exotic, but does agree with observations...



e alternatively, waves could have avoided destroying the Main Belt by propagating
Into a more distant reservoir of as—yet—unseen KBOs orbiting beyond 50 AU

— however many KB astronomers object to this utterly speculative scenario...
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