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Introduction

Although Nbody methods are widely used to study disk-planet interac-

tions, such methods are difficult to apply in a planetary ring. This is be-

cause the ring’s highly organized response to satellite perturbations (eg, a

spiral density wave, or a scalloped ring-edge) has small forced eccentric-

ities e . 10
−4. In an Nbody simulation, the ring’s gentle collective motions

are easily swamped by gravitational scattering among the system’s finite

number of particles. Although this difficulty is avoided in simulations of a

small patch of many low-mass particles (Salo 1995, Salo et al 2001), the

patch method cannot be used to model large-scale disturbances in a ring.

Alternatively, fluid dynamics can be used to study a perturbed ring’s col-

lective behavior. The planetary ring is treated as a collection of stream-

lines that interact via gravity and hydrodynamic forces. This results in a

coupled system of nonlinear differential equations that are solved for the

ring’s equilibrium state (Borderies et al 1985, 1989, Hahn et al 2009).

However these equations’ considerable complexity might explain why this

method is not widely used to calculate a ring’s evolution over time.

To address this, the following describes an algorithm that combines Nbody

methods with streamline dynamics, resulting in a code that calculates the

ring’s time evolution. The code is then used to model two systems: the

scalloped edge of Saturn’s B ring, and a nonlinear density wave.

Numerical method

A 2
nd order Wisdom-Holman map advances the particles in time (Wis-

dom & Holman 1991, Saha & Tremaine 1992). This kick-drift scheme

has orbit elements ‘kicked’ by the perturbing forces during timestep ∆t,

plus an unperturbed orbital ‘drift’ during ∆t. Motion around an oblate

planet is epicyclic, so particle coordinates are r = a(1− ecosM) and

θ = ω̃ +M+ 2esinM where the orbit elements a,e,M, ω̃ experience kicks
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every timestep ∆t due to the radial and azimuthal accelerations Ar,Aθ,

while the unperturbed motion drifts as ∆ω̃ = (Ω−κ)∆t and ∆M = κ∆t (from

Longaretti & Borderies 1991, to O(e)). The ∆a’s are also orbit-averaged

so that all particles on a streamline maintain a common semimajor axis a

over time. Torques are also applied to the inner and outer streamlines to

prevent any viscous radial spreading of the ring.

Streamlines, and the ring’s internal forces

A streamline is the path traced by numerous ring particles having a com-

mon semimajor axis a; see Fig. 1. The streamline concept is a very useful

here, because the forces that a streamline exerts on a particle (gravity,

pressure, etc) are simple functions of separation ∆r. These streamlines

are also in close proximity, so a particle will sense a nearby streamline as

a long straight wire of linear density λ. Consequently, the surface density

at any site is simply σ = λ/∆r, while the gravitational acceleration from a

streamline is Ar = 2Gλ/∆r. Some models also use a fictitious drag acceler-

ation A=−CdΩ∆v where ∆v is the particle’s velocity relative to the circular

speed, and Cd is the drag coefficient; this force can prevent the ring from

getting so disturbed that streamlines cross, which is problematic.

Compressible ring: Most of the simulations here assume that the ring

is compressible with pressure p = c2σ. In this case, the acceleration due

to ring pressure is Ar = −(c2/σ)(∂σ/∂r), while that due to ring viscosity is
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where νs,νb are the ring’s kinematic shear and bulk viscosities, and vr,vθ

are the particles’ radial and tangential velocities.

Incompressible ring: We also consider an incompressible ring whose

particles are packed shoulder to shoulder. Any horizontal compression

of the ring then increases the ring’s vertical thickness h, which is related

to the surface density via h = σ/2ρ where ρ is the ring’s constant volume

density. The vertical component of the planet’s gravity also pushes ring-

matter to the midplane, resulting in pressure p = ρ(hΩ)2/3 = (σΩ)2/12ρ.

For isotropic pressure, this results in acceleration Ar = −ρ−1(∂p/∂r), while

the viscous acceleration is similar to Eqn. (3) but with νb = 0 and 4/3→ 1.
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Simulations of the B ring’s outer edge

The B ring’s outer edge is controlled by an m = 2 inner Lindblad reso-

nance with the satellite Mimas, with the ring-edge lying 14 km exterior to

this resonance (Spitale & Porco 2010). As expected, the B ring-edge has

an m=2 component with an epicyclic amplitude of R=35 km, which trails

Mimas by by φ = −3
◦ (Spitale & Porco 2010). Cassini observations also

show that the ring-edge has m = 1 and m = 3 disturbances there, as well

as a freely precessing m = 2 component, but these disturbances are not

yet accounted for by this model, and are not considered further here.

Drag-dominated ring: Figure 1 shows a simulated B ring after it settles

to equilibrium at time t = 50 yrs or 4× 10
4 orbits. Dots indicate particle

positions, and curves connect particles along streamlines. A compress-

ible equation of state is used here, and dissipation due to a fictitious drag

having Cd = 3×10
−5 causes the ring’s m = 2 pattern to lap behind Mimas

by φ = −5
◦. A ring having a higher surface density will have a smaller

epicyclic amplitude R, and this simulated ring’s surface density σ0 = 100

gm/cm2 was chosen to match the B ring’s observed amplitude R = 35 km.

FIGURE 1: The outer B ring’s response to Mimas’ m = 2 ILR. This simulation uses Np = 32 particles

(dots) in Ns = 32 streamlines (curves), with NpNs = 1k total. Greyscale shows the ring’s surface density

varies over 0.5 > ∆σ/σ > 2. The model assumes ring surface density σ0 = 100 gm/cm2, a compressible

EOS with c chosen so Toomre’s stability parameter Q = 2, and dissipation due to drag with Cd = 3×10
−5.

Viscosity-dominated ring: Figure 2 shows a more realistic simulation

where dissipation in the ring is due to viscous friction that accounts for

other unmodeled effects, such as collisions or scattering among particles.

A rather heavy viscosity, νs = 600 cm2/sec and νb = 3νs, is used to make

the ring’s m= 2 pattern lag behind Mimas’ longitude by φ =−5
◦. Note also

the banded pattern in the ring’s surface density, which is due to alternating

separations among adjacent streamlines. This banding is only seen when

dissipation in the ring is dominated by viscosity, which suggests that this

effect might be associated with viscous overstability. Note also that this

banding is most prominent at the ring’s outer edge, which is most strongly

disturbed by Mimas m = 2 ILR. The bands’ radial spacing is ∆r ∼ 10km

in these simulations, but this only an upper limit because ongoing higher-

resolution simulations show similar banding on smaller scales.

FIGURE 2: Dissipation in this simulated B ring is due shear viscosity νs = 600 cm2/sec and bulk viscosity

νb = 3νs. Undisturbed ring surface density is σ0 = 165 gm/cm2, and compressible EOS with Q= 2 is used.

Right figure shows radials surface density variations along ring’s longitude of periapse and apoapse.

Incompressible ring: Figure 3 considers a B ring whose particles are so

close-packed that they obey the incompressible equation of state. This

ring is much more dynamic, and does not settle down to steady state.

Rather, this ring experiences m = 2 spiral density waves that propagate

both inwards and outwards. Waves reflect at ring-edges and superimpose

at ring center, causing large fluctuations in surface density. Eventually the

ring gets so disturbed that streamlines cross and subsequent evolution is

unreliable; Fig. 3 shows the ring just before then. Surface density varia-

tions also cause variations in the ring’s vertical thickness h= σ/2ρ, shown

as radial cuts along the ring’s longitude of periapse and apoapse.

FIGURE 3: Simulation of incompressible B ring at time t = 2.7 yrs (2000 orbits), just before streamlines in

the disturbed region cross. This ring has undisturbed surface density σ0 = 180 gm/cm2, viscosity νs = 600

cm2/sec and νb = 3νs, undisturbed scale height h0 = 1.8m, and constant volume density ρ = 0.5 gm/cm3.

Right figure shows scale height h = σ/2ρ along the ring’s longitude of periapse and apoapse.

Note that the outcome seen in Fig. 3 might be a consequence of boundary

conditions, which treats the simulated ring’s inner and outer streamlines

as hard edges. Consequently, spiral waves do not escape the simula-

tion, which may be why the ring does not settle to equilibrium. This will

be examined closely as we implement a radiative boundary condition that

allows inward-propagating waves to escape. Lastly, note that this model

does not yet account for the ring’s vertical gravity, which will increase ring

pressure and, we suspect, cause spiral waves to propagate even faster.

Spiral density waves

Figure 4 demonstrates that the code developed here can also simulate

nonlinear spiral density waves launched at a satellite’s mth Lindblad res-

onance. This simulation of an m = 2 spiral used 1.5k particles, and was

evolved for 5000 orbits, which is the time for this wave to propagate about

six wavelengths. Execution time on a desktop PC is 30 minutes.

FIGURE 4: Simulation of an outward-propagating spiral density wave launched at an m = 2 ILR. Ring

surface density σ = 200 gm/cm2, Q = 1.5, and a compressible EOS is used. Drag with Cd = 10
−4 pre-

vents the downstream waves from steepening so much that streamlines cross. Surface density crests

trail in longitude as they advance in radius, so this is a trailing spiral. Note the peaks and troughs are not

symmetric about σ/σ0 = 1 (right), so this is a nonlinear spiral wave.

Main findings

•An Nbody method is successfully used to simulate collective phenom-

ena in a planetary ring, such as the scalloping that occurs along the

outer edge of Saturn’s B ring, and the propagation of a spiral density

wave in the ring’s interior.

•The code uses streamline dynamics to calculate the ring’s internal

forces: gravity, pressure, and viscosity. This method is very effective at

mitigating the particle-particle scattering that often prevents an Nbody

code from resolving collective effects in a ring simulation.

•The purpose of the effort is to compare simulations to Cassini observa-

tions of the ring, to infer the ring’s physical properties (surface density,

equation of state, etc), and to test theories of ring evolution (such as the

origin of the B ring’s interesting m <> 2 modes).

•The next generation of this code will also track the ring’s vertical dis-

placements, which will then allow us to simulate the propagation of non-

linear spiral bending waves as well.
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