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Introduction

The outer edge of Saturn’s main A ring is confined by m = 7 inner Lindblad
resonances (ILRs) with the coorbital satellites Janus and Epimetheus,
while the outer B ring is confined by an m = 2 ILR with the satellite Mimas
(Porco et al 1984). The following outlines a detailed dynamical model of
these interesting ring-satellite systems. This model accounts for the satel-
lite’s perturbations, as well as the ring’s internal forces—ring self gravity,
pressure, and viscosity, as well as the possible drag forces (e.g., plasma,
Poynting-Robertson, and/or Yarkovsky drag) that might affect smaller ring
particles, too. Our goal is to understand how the ring’s response to the
satellite’s perturbations also depends on the ring’s physical parameters:
its unperturbed surface density σ0, the ring particles’ dispersion velocity c,
the ring’s viscosity ν, and strength of the drag force. Comparisons of the
model to spacecraft observations of the ring-edges should then provide
estimates of, or else limits on, the ring parameters σ, c, ν, and Cdrag.

Equations of motion

A ring particle’s trajectory r(t) obeys Newton’s second law of motion,

r̈ = −∇(Φp +Φs)+a (1)

where Φp and Φs are the gravitational potentials of the central planet and
satellite, and a = ag + ap + aν + adrag = Arr̂ + Aθθ̂ are the particle’s accel-
erations due to ring gravity, pressure, viscosity, and the hypothetical drag
force, with Ar and Aθ the total radial and tangential accelerations. A Fourier
expansion of the perturbations then makes Eqn. (1) more manageable,

Φs(r) ≃ φm
s (r)eim(θ−θs) (2)

Ar(r) ≃ A0
r(r)+Am

r (r)eim(θ−θs) (3)
Aθ(r) ≃ A0

θ(r)+Am
θ (r)eim(θ−θs), (4)

remembering to preserve only the real parts of all equations. The ring’s
particle’s response to perturbations is an epicyclic trajectory

r(t) = a−Rmei(mθ0+ωmt−mω̃) ≃ a−Rmeim(θ−θs−ω̃), (5)

where a is the particle’s semimajor axis, Rm = ea is the particle’s epicyclic
amplitude, e its forced eccentricity, ωm = m(Ω−Ωs) is the satellite’s forcing
frequency where Ω and Ωs are the particle’s and satellite’s angular veloc-
ities, and ω̃ is the particle’s longitude of periapse. Inserting Eqn. (5) into
(1) and linearizing then provides the particle’s epicyclic amplitude

Rm = −
Ψm

s −2iεAm
θ +Am

r

D
eimω̃, (6)

where D = κ2−Ω2
m is the particle’s frequency-distance from resonance,

κ ≃ Ω is the epicyclic frequency, and Ψm
s =−∂φm

s /∂a−2εmφm
s /a is the satel-

lite’s forcing function. A Lindblad resonance (LR) is a site where D(a) = 0
or κ = εωm, with ε = +1 at an inner LR and ε = −1 at an outer LR.

streamlines: Eqn. (6) requires the mth Fourier components of the ring’s
radial and tangential accelerations, Am

r and Am
θ . Their calculation is greatly

simplified by the concept of streamlines (Borderies et al 1985), which are
the trajectories traced by the right-hand side of Eqn. (5). A broad planetary
ring is then regarded as the sum of many streamlines whose eccentricities
e(a) and longitudes of periapse ω̃(a) are functions of semimajor axes a.

Simple mass conservation relates the the ring’s surface density to the
streamlines’ orbit elements via

σ(a,θ) =
σ0(a)

J
, J(a,θ) =

∂r
∂a

≃ 1−qcos[m(θ−θs− ω̃)], q ≃
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where J−1 is the ring’s compression and q is the nonlinearity parameter
of Borderies et al (1985). The following analysis also makes the local ap-
proximation, which assumes that the ring’s force on a particle is exerted
by nearby streamlines that resemble long, straight wires of matter.

ring self gravity: In the local approximation, the gravitational acceler-
ation that a streamline exerts on a ring particle is δag = 2Gλ/d, where
λ = σ0(a′)δa′ is the streamline’s linear mass density, δa′ is the streamline’s
semimajor axis width, and d = r′− r is the particle’s distance from the
perturbing streamline. The acceleration that the entire ring exerts on a
particle is

ag =

Z

ring

δag =

Z aout

ain

2Gσ0(a′)da′

r(a′,θ)− r(a,θ)
≃ A0

gr +Am
gre

im(θ−θs) (8)

where the Am
gr are the mth Fourier components of the ring’s gravitational ac-

celeration that are function of the ring’s orbit elements e(a) and ω̃(a) and
surface density σ0(a). Formulas for the Am

r and Am
θ are all too ponderous

for this presentation, but are instead detailed in Hahn et al (2008).

ring pressure: Collisions among ring particle also result in an accelera-
tion due to pressure that, in the hydrodynamic approximation, is

ap = −
c2

σ
∂σ
∂r

≃ A0
pr +Am

pre
im(θ−θs) (9)

where c is the ring particles’ dispersion velocity. The Fourier coefficients
for this acceleration, Am

pr, are again complicated functions of the e(a), ω̃(a),
σ0(a) that are given in Hahn et al (2008).

Eqn. (9) is the differential acceleration that adjacent and opposing stream-
lines exert on a ring particle due to pressure. Thus this equation does not
apply to the ring’s outermost streamline, where pressure is due to a sin-
gle adjacent streamline. To calculate the pressure drop at the outermost
streamline, use the linear momentum flux Gp = c2σ, which is the force-per-
length that a streamline exerts on its neighbor. It can then be shown that
the particle’s acceleration due to the pressure drop at the ring’s edge is

ap(a,θ) =
Gp

σ0∆a
≃ A0

pr +Am
pre

im(θ−θs), (10)

where ∆a is the streamline’s semimajor axis width (Hahn et al 2008).

ring viscosity: Viscosity in a planetary ring is due to collisions among
particles (Goldreich & Tremaine 1982) or perhaps due to self-gravitating
wakes (Daisaka et al 2001). A ring particle’s radial and tangential accel-
erations due to viscous friction are

aνr ≃
1
σ

∂
∂r

[(

4
3

νs +νb

)

σ
∂υr

∂r

]

and aνθ ≃
1
σ

∂
∂r

(

νsσr
∂υθ

∂r

)

(11)

where νs and νb are the ring’s kinematic shear and bulk viscosities
(from Landau & Lifshitz 1987). Again, these formulas only apply in
the ring’s interior, since they are the difference in the accelerations
exerted by adjacent and opposing streamlines. To get the accelera-
tion at the outermost streamline, use the viscous linear momentum flux
Gν ≃−

(

4
3νs +νb

)

σ(∂υr/∂r) to calculate aνr = Gν/σ0∆a. Another useful
quantity is the viscous angular momentum flux Fν ≃ 2νsσ0aΩ(1/J −1/4J2)
(from Borderies et al 1982), which also provides the tangential viscous
acceleration at the ring’s edge, aνθ = Fν/σ0a∆a (Hahn et al 2008).

torque balance at the ring’s outer edge: The ring’s outer edge is the
site where the viscous torque precisely balances the satellite’s torque on
the ring. The viscous torque is Lν =

H

Fνdℓ = 3πνsσ0a2Ω(1− 4
3q2)/(1−q2)3/2,

which is also known as the ring’s viscous angular momentum luminosity
(AML) (Borderies et al 1982). The torque that the satellite exerts on a sin-
gle particle is T1 = 1

2mRmΨm
s sinω̃ (Hahn et al 1995), so the AML due to the

satellite’s torque is is Ls(a) =−
R a T12πσ0ada, which is the rate at which the

satellite withdraws AM from the ring interior to a. The ring’s total AML is

L(a) = Lν +Ls =
3π(1− 4

3q2)

(1−q2)3/2
νsσ0a2Ω−

Z a

mπσ0aRmΨm
s sinω̃da, (12)

which must be conserved such that L(a)= 3πνsσ0a2Ω is constant, because
static equilibrium requires that the tangential acceleration A0

θ ∝ ∂L/∂a = 0
everywhere in the ring. This supplies a third equation for the third un-
known, which is the ring’s surface density σ0(a). This equation also tells
us where the ring’s edge is located, since that must be the site where the
AML is purely gravitational, i.e., Ls(aedge) = L and Lν(aedge) = 0.

numerical solution: The model described by Eqns. (6)–(12) are coupled,
nonlinear integro-differential equations. Those equations are solved by
representing the ring as N discrete streamlines, replacing integrals with
sums, and using finite difference methods to evaluate derivatives. This re-
sults in a nonlinear system of 3N coupled equations for the N streamlines’
ei, ω̃i, and σi that are straightforward to solve numerically.

FIGURE 1: Fig. 1A plots the model B ring’s epicyclic amplitude Rm versus semimajor axis distance from
the resonance, for a variety of rings whose surface densities are indicated in units of gm/cm2. The dotted
line is the B ring’s observed epicyclic amplitude, Rm ≃ 45 km (Spitale & Porco 2006). Models also show
that Rm increases as the ring-edge’s distance from resonance is increased, but that can be offset by
increasing in the ring’s density σ such that Rm = Robs; see Fig. 1B.

Model B ring results

Figure 1A show how the ring-edge’s epicyclic amplitude Rm(a) depends
on the ring’s surface density σ; that figure demonstrates that a heavier
ring has a smaller Rm. Those models also show that Rm is sensitive to the
location the ring’s outer edge, with Rm getting larger when its edge lies
further beyond resonance. However that increase in Rm can also be offset
by increasing the ring’s density σ; see Fig. 1B. Also recall that Voyager
observations showed that the B ring’s outer edge could lie as far as 24 km
beyond Mimas m = 2 ILR (Porco et al 1984). Fig. 1B thus indicates that
the outer B ring’s surface density is 10 . σ . 280 gm/cm2. A more rigor-
ous comparison of this model to Cassini measurements of the ring-edge’s
location should allow us to pin down the ring’s σ with greater certainty.

Eqn. (7) also predicts that a perturbed ring should experience signifi-
cant variations is its surface density, which is plotted in Fig. 2A. Note
that the ring-edge’s surface density is enhanced ∼ 50% at periapse, due
to the satellite’s perturbations having shoved streamlines inwards there
and compressing them. Curiously, no such periapse-enhancements have
been reported in spacecraft observations of sharp ring-edges. This may
be due to I/F saturation, which is the saturation of a ring’s surface bright-
ness that occurs when optical depths exceeds ∼ 0.3 (Porco et al 2008).

Figure 2B also plots the ring’s angular momentum luminosities Lν and Ls.
As expected, Lν → 0 and Ls → L at the ring’s outer edge, which in this B
ring simulation lies 24 km beyond Mimas m = 2 ILR.

FIGURE 2: Equation (7) is used to calculate relative surface density variations for a model B ring. Fig-
ure 2A shows σ versus radius r plotted along three different longitudes: towards the ring’s longitude of
periapse, its apoapse, and along an intermediate longitude. Figure 2B plots the ring’s viscous angular
momentum luminosity Lν, as well as the AML due to the satellite’s torque, Ls, in units of the total L . As
expected, Lν → 0 and Ls → L at the ring’s outer edge, which lies 24 km beyond Mimas m = 2 ILR.

Additional conclusions

• Ring self gravity is the dominant internal ring force. Pressure is weak
and unimportant everywhere except at the ring’s edge, similar to narrow
eccentric ringlets (Chiang & Goldreich 2000, Mosqueira & Estrada 2002).

• The torque that the satellite exerts on a viscous ring is extremely weak,
smaller than the Goldreich-Tremaine (1978) torque formula by orders of
magnitude. This makes balancing the viscous and gravitational torques at
the ring edge very difficult. Note that the viscous torque is ∝ νs while the
satellite’s torque ∝ (νs+νb). We find that a torque balance is possible when
the bulk/shear viscosity ratio is νb/νs ∼ 104. However, it is unclear whether
a planetary ring’s viscosity can actually satisfy this extreme requirement.

• However, a drag force is very effective at enabling the satellite’s torque
on the ring, as well as maintaining a torque balance at the ring’s outer
edge. This is due to the larger |ω̃| that results from drag (see Eqn. 12).

future activities:
The streamline model developed here is very general, and can be adapted
to study narrow eccentric ringlets, and nonlinear spiral density waves.
Adapting the model to investigate the A ring’s interaction with the coorbital
satellites Janus and Epimetheus is also underway (Spitale et al 2008).
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