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Introduction
The following considers the dynamical evolution of a small satellite orbiting in
a dense planetary ring. Examples of such systems include the gap-embedded
moonlets Pan (which inhabits the Encke gap), and Daphnis (which orbits in the
Keeler gap), both of which reside in Saturn’s main A ring.

Our interest here is the long-term orbital stability of a gap-embedded satellite,
which is actually uncertain due to the satellite’s resonant interactions with the
ring. For instance, a satellite’s back-reaction to its many vertical resonances in
the ring tends to pump up the satellite’s inclination i over time (Borderies et al
1984). Similarly, the satellite’s many Lindblad and corotation resonances in the
ring will also cause the satellite’s eccentricity e to evolve (Goldreich & Tremaine
1981, 1982). Consequently, it is a curiosity that Pan and Daphnis inhabit nearly
circular orbits coplanar with the ring, despite their resonant interactions with the
ring.

The next Section summarizes the effects of the satellite’s resonant interactions
with the ring. Subsequent Sections then calculate the rate at which the satel-
lite’s secular perturbations of the ring also cause the satellite’s e and i to evolve.
These evolutionary rates are then compared in the final Section, to determine
whether this secular ring-satellite interaction can in fact stabilize the orbit of a
gap-embedded satellite.

A gap-embedded satellite’s resonant interactions with a ring
Borderies et al (1984) calculate the rate at which an inclined satellite’s vertical
resonance in a planetary ring tends to pump up the satellite’s inclination i. When
that interaction is then summed over all of the satellite’s resonances in the ring,
its inclination is excited at the net rate
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where the factor fv ' 0.02, the satellite’s mass µs is in units of the central planet’s
mass Mp, the so-called normalized ring mass µd = πσa2/Mp where σ is the ring
surface density, ∆ is the gap’s fractional half-width, and a and n are the satellite’s
semimajor axis and mean angular velocity (Borderies et al 1984, Ward & Hahn
2003). For Pan, which orbits in the Encke gap (whose full width is 2∆a ' 300
km) in Saturn’s A ring (where the ring surface density is σ ' 50 gm/cm2), this phe-
nomenon pumps up the satellite’s inclination over a timescale τi = |i/(di/dt)| ∼ 105

years. Note that this i-pumping timescale is very short compared to the age of
Saturn’s ring system, so it remains a mystery as to why the orbits of the gap-
embedded satellites Pan and Daphnis are in fact coplanar with the ring.

A satellite’s eccentricity e will also evolve due to its many Lindblad and corotation
resonances in the ring (Goldreich & Tremaine 1981, 1982). Summing contribu-
tions from all of a gap-embedded satellite’s Lindblad resonances in the ring yields
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where the factor fL = 1.52. However this e-excitation is in competition with the
satellite’s corotation resonances, whose e-damping rate is similar to Eqn. (2) but
with a lead coefficient fC = −1.60. This competition seemingly results in a net
damping of the satellite’s eccentricity at rate of ė ∝ fLC where fLC = fL+ fC =−0.08,
which means that e-damping due to corotation resonances wins, but only by a 5%
margin. However, if the motions of the ring particles orbiting at these corotation
resonances are saturated, then the torque on the satellite due to its corotation
resonances is ineffective (Goldreich & Tremaine 1981), and the satellite’s e grows
due to its Lindblad resonances over a very short timescale, τe = |e/(de/dt)L| ∼ 103

years.

Consequently, the orbit of a gap-embedded satellite is seemingly unstable, since
the satellite’s interaction with its vertical resonances in the ring tends to pump up
the satellite’s i. Also, the stability of the satellite’s e is uncertain. For instance,
if the satellite’s corotation resonances in the ring are saturated, then Lindblad
resonances will pump up the satellite’s e until it crashes into the nearby gap edge.

Secular interactions with a planetary ring
Another type of gravitational ring-satellite interaction worth considering are sec-
ular perturbations, which is a slowly varying gravitational disturbance that can
alter a body’s e and i, as well as drive orbital precession. For instance, a per-
turber’s secular perturbations can launch spiral waves at a secular resonance in
a disk (Ward & Hahn 1998, 2003), as well as at a non-resonant site like a nearby
gap edge (Goldreich & Sari 2003). This secular interaction might also provide
some orbital stability to a gap-embedded satellite, since this phenomenon tends
to damp a perturber’s e and i.

simulating secular ring-satellite interactions

A body’s secular perturbations are equivalent to that exerted by a gravitating ring
(Murray & Dermott 1999). Consequently, it is convenient to simulate the secu-
lar evolution of a ring-satellite system by treating a broad planetary ring as if it
where composed of numerous narrow rings whose shapes and orientations are
described by their individual semimajor axes a j, eccentricities e j, inclinations i j,
longitude of periapse ω̃ j, and longitude of ascending nodes Ω j. The subsequent
evolution of the rings’ and satellite’s orbital elements is then given by the secular
solution to the Lagrange planetary equations (Murray & Dermott 1999), which is
conveniently calculated using the so-called rings model of Hahn (2003). In these
simulations, the rings are given masses m j that correspond to a surface density
of σ = 50 gm/cm2. Each ring is also assumed to have a small thickness h due to
the individual ring-particles’ dispersion velocity, which has the effect of softening
the gravity that is exerted by adjacent rings.

Figure 1 illustrates the evolution of a 10km satellite as it orbits in the center of a
100km-wide gap in Saturn’s main A ring, which corresponds loosely to the gaps
maintained by Pan or Daphnis. The satellite is given a small initial eccentricity es
and inclination is, while all the other rings in this system have initial e = 0 = i. As
that figure shows, the satellite’s secular perturbations excites the eccentricities of
the rings at the nearby gap edge, which in turn excites the e’s of the more distant
rings due to their self-gravity. The right-hand part Fig. 1 also plots the ring’s lon-
gitudes ω̃(a), which steadily rotates with distance a in the ring, indicating that this
disturbance is in fact a trailing m = 1-armed density wave. A similar disturbance
is also seen in the ring’s inclinations i and Ω(a), which reveals that the inclined
satellite also launches a leading one-armed spiral bending wave at the gap’s outer
edge. As Fig. 1 shows, the wavelength of these waves is λ ∼ 0.002as ∼ 300km,
which is much longer than the λ ∼ O(10) km waves routinely launched at mean-
motion resonances throughout the ring (Tiscareno et al 2007). The simulated
waves also propagate at the group speed cg = µdan ∼ 30 km/year in Saturn’s A
ring.

FIGURE 1: Left figure shows the time-evolution of a planetary ring that is disturbed by a small eccentric satellite
orbiting in a narrow gap in the ring, indicated by the dot. Colored curves show the rings’ eccentricities e plotted
versus their semimajor axes a at selected times t in years. The dashed line is the expected wave amplitude, from
Eqn. 3. Right figure plots the rings’ longitudes of periapse ω̃(a) at time t = 60 years. Note that this curve wraps up
with distance a, which indicates that this disturbance has the form of a trailing spiral density wave whose wavelength
is λ ∼ 0.2% of the satellite’s orbital radius as.

An analytic description of these waves
The amplitude of these waves, as well as their dispersion relation, is derived
from the Lagrange planetary equations. Those derivations are provided in Hahn
(2007a,b), with the results summarized below.

wave amplitude and dispersion relation

The amplitude of these very long-wavelength spiral density and spiral bending
waves is

e ' µses
3µd∆

and i ' µsis
3µd∆

, (3)

which compares well with the amplitudes seen in the simulations
(dashed line in Fig. 1).

The waves’ dispersion relation also yields their wavenumber k = −∂ω̃/∂a, where

|k(x)| ' 2+(µc/µd)(1+ x/∆)

3a∆
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where Rp is the central planet’s radius and J2 its second zonal harmonic. Note that
the planet’s oblateness (described by J2) causes the wavenumber |k| to increase
with the distance x from the ring edge, which causes the wavelength to shorten
with distance, as is evident in the simulation (right Fig. 1).

surface density variations

The surface density variations due to this density wave is |∆σ/σ| ' |eak| (Bor-
deries et al 1985, Hahn 2003) where the wavenumber |k| ' 2π/λ ∼ 0.02 km−1.

The rings model is used to determine the amplitude of the waves launched by
Pan, which yields e ∼ 3×10−7. Inserting these values into the above then yields
|∆σ/σ| ' 0.001 due to the density waves that Pan can launch at the outer edge of
the Encke gap. This of course is likely far to small to be observed by the Cassini
spacecraft. Similarly, the height of the bending waves that an inclined Pan might
launch are also likely too small for direct detection.

Instead, the main import of this ring-satellite interaction will be in the rates at
which this secular phenomenon damps the satellite’s e and i, provided below.

e and i damping due to the secular ring-satellite interaction

The Lagrange planetary equations also provide the rates at which this secular
phenomena alters the satellite’s e and i. Since the excitation of these waves trans-
ports angular momentum from the satellite to the ring, this interaction damps the
satellite’s e and i at the rates (from Hahn 2007a,b)
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A comparison of a satellite’s i-damping rate due to its secular interaction with the
ring (Eqn. 5) to its i-excitation rate due to its vertical resonances in the ring (Eqn.
1) shows that the satellite’s inclination is stable (di/dt < 0) when the satellite’s gap
is sufficiently wide,

∆ & 0.5√µd. (6)

Both Pan and Daphnis satisfy this requirement, so their inclinations are stable.

When the satellite’s e-damping rates (due to this secular interaction plus the coro-
tation resonances) are compared to e-excitation due to the Lindblad resonances,
we find that the satellites’ de/dt < 0, so Pan and Daphnis’ eccentricities are seem-
ingly stable. But this of course is due to the near cancellation of the Lindblad and
corotation torques.

If, however, the corotation resonances are saturated, then their e-damping effects
are inoperative. But in this case, the secular e-damping overcomes the Lindblad
e-excitation when

∆ & 3.4√µd. (7)

However, neither Pan’s Encke gap nor Daphnis’ Keeler gap is wide enough to
satisfy this requirement. But since both satellites do in fact reside in nearly cir-
cular orbits, this then suggests that de/dt < 0, which implies that these satellites’
corotation resonances are not saturated.

Main findings
•The secular perturbations exerted by a gap-embedded satellite results in the ex-

citation of spiral density and bending waves at the gap’s outer edge. In Saturn’s
A ring, waves launched by Pan and Daphnis will have very long wavelengths,
with λ ∼ hundreds of km, and very low amplitude, ∆σ/σ ∼ 0.001, which is likely
too low for direct detection.

•This secular ring-satellite interaction also damps the satellite’s e and i on a short
timescale that is or order τ∼ 103 years. The pace of this e and i-damping dwarfs
the excitation that is due to the satellite’s Lindblad, corotation, and vertical res-
onances in the ring, thus stabilizing these satellite’s e and i and confining them
to the center of their gaps.

•However, e-damping due to this wave-action does not exceed e-excitation due
to Lindblad resonances; corotation resonances are also required to assist in the
e-damping. This implies that Pan and Daphnis’ corotation resonances are not
saturated.
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