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Introduction
Saturn’s rings represents one of the Solar System’s great
mysteries. The origin of these rings, as well as their past
and present evolution, are all poorly understood. The
youthful appearance of these rings is particularly puzzling;
the purity of these water–ice rings due to the lack of con-
tamination by dark interplanetary dust suggest an ‘expo-
sure’ age of order 100 million years (Doyle et al. 1989).
Similarly, the small satellites orbiting just beyond the main A
ring seem even younger, ∼10 million years, due to their in-
teractions with the rings (Poulet & Sicardy 2001). The main
challenge then is to understand why these rings appear to
be so much younger than the rest of the Solar System. To
address this, the following describes the development of
a model that will ultimately track the dynamical evolution
of Saturn’s coupled ring-satellite system. The goal of this
effort will be to use this model to determine the past and
future histories of this ring system, and to infer its origin.

The ring’s radial evolution
Saturn’s rings evolve radially due to the viscous torque that
is the result of the ring particles’ frequent collisions, and
also due to the torques that are exerted by Saturn’s satel-
lites. The ring is treated here as a thin fluid disk whose
evolution is described by a mass continuity equation (left
Eqn. 1), and Euler’s equation for the fluid velocity v; those
equations can then be combined to yield another conserva-
tion equation for the ring’s angular momentum (right Eqn.
1, see also Pringle 1981):
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where σ(r, t) is the ring’s mass surface density and
~̀(r, t) = σr×v is the ring’s angular momentum surface den-
sity. The source term on the right side of (1) is the torque
surface density~τ = σr×dv/dt.

For a nearly keplerian system, the ring’s radial velocity is
proportional to the torque, vr ' τ/σ∂(rvθ/∂r). Inserting this
into Eqns. (1) then yields a single diffusion equation for the
disk’s angular momentum surface density (Pringle 1981,
Ruden & Lin 1986):
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The rings’ evolution is driven by the torque surface density
τ = τν + τs which has two parts: the viscous torque τν, and
the satellite torque τs that is due to resonant perturbations
of the ring.

The viscous torque density
The viscous torque surface density is (from Lynden–Bell &
Pringle 1974)
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where ν is the ring’s viscosity. A ring of colliding particles
has a viscosity ν ' τdv2

d/2Ω = K(vd/rΩ)2`/2, where vd is the
ring particles dispersion velocity, Ω(r) is the ring’s angular
velocity, and τd = Kσ is the ring optical depth where K =
ring opacity, and ` = σr2Ω (Goldreich and Tremaine 1982).
Note that this viscosity law has τν ∝ `(∂`/∂r), which makes
the diffusion Eqn. (2) nonlinear.

The resonant torque density
A satellite’s resonant torque density τs is due to the wakes
and/or spiral density waves it excites at its various Lind-
blad resonances (LRs, aka mean–motion resonances) that
lie in the ring. A satellite of semimajor axis as has an mth

LR at radius rm = (1± 1/m)2/3as. The satellite will also be
gravitationally attracted to the density disturbance it excites
in the ring, and consequently exerts a torque (Goldreich &
Tremaine 1978)

Tm ' ±8m2µ2
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there, where µs is the satellite’s mass in Saturn units, all
quantities are evaluated that the mth resonance, and the
sign is chosen so that the torque is positive/negative for ring
material orbiting exterior/interior to the satellite. Assuming
this torque is distributed uniformly between adjacent reso-
nances separated by a distance ∆rm ' 2as/3m2 = 3∆2/2as,
then the satellite’s resonant torque density is
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where ∆ =satellite–resonance distance.

Satellite migration
The total torque that the satellite exerts upon the disk is

T =

Z
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so −T is the torque that the disk exerts upon the satellite of
mass Ms, which causes its orbit to evolve at the rate
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This same calculation is also employed in studies of type II
planet migration (Ward 1997).

The evolution equations
The torque that a small satellite (such as Pan) exerts in a
planetary ring tends to carve open a very narrow gap in the
ring whose half–width is rgap � r; this is our problem’s natu-
ral unit of length, while the natural unit of time is the viscous
timescale Tν = r2

gap/9ν. This process can be studied using
the dynamical equations (2–7), which we make linear by
assuming that the viscosity ν is a constant. We also ignore
changes in slowly varying quantities like r,Ω(r), etc., and
make the equations dimensionless by replacing the small
distance ∆ with x = ∆/rgap and time t → t/Tν:
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is the dimensionless viscous + resonant torque densities,
and s = sgn(x− xs) where xs is the satellite’s dimensionless
radial coordinate which evolves at the rate
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where µds = πσr2/Ms is the dimensionless disk–satellite
mass ratio, and xgap = rgap/r = (µ2

sr2Ω/9ν)1/3 is the fractional
gap half–width.

The numerical solution
The disk evolution is obtained from Eqn. (8), which is
solved numerically using a Crank–Nicholson finite differ-
ence scheme (Richtmyer & Morton 1967). A Runga Kutta
integrator (Press et al 1994) is used to solve Eqn. (9) and
track the satellite’s position xs(t) as it evolves over time.
The boundary conditions are such that the torque τ = 0 at
the disk’s inner and outer edges, which keeps disk material
from flowing out of the computation domain.

Figure 1: A small satellite initially inhabits a narrow gap at time t = 0. The disk’s
angular momentum surface density ` (which is proportional to the mass surface den-
sity σ) is shown for later times t, which eventually settles into the equilibrium config-
uration, Eqn. (10), which is the dashed curve. The computational length unit ∆x = 1
corresponds to a physical distance of ∆r = 150 km (the half–width of the Encke gap),
while one unit of time ∆t = 1 corresponds to 4×106 orbits, or about 5000 years.

Test case: Pan opens the Encke gap
The above model can be tested by using it to examine how
a small satellite embedded in a planetary ring can widen a
gap about its orbit, which we apply to Pan and the Encke
gap. Pan orbits Saturn at r = 1.34×105 km, and has mass
µs = 8.7× 10−12 Saturn masses, and resides in the A ring
having a surface density of σ ∼ 50 gm/cm2. If we assume
that Pan formed via runaway growth, then it would have
accreted all material in its feeding zone whose half–width
is ∆racc = 2

√
3× Pan’s Hill radius ' 60 km, which is about

40% of the Enck gap’s half–width. Figure 1 illustrates how
a suddenly–formed Pan, which would initially inhabit a very
narrow gap due to its own accretion, tends to widen that
gap further due to its resonant torque τs, Eqn. (5). Note
also that the satellite’s orbit stays fixed, ie ẋs = 0, due to the
disk’s radial symmetry (see Eqn. 9).

This calculates serves as a test of the code, since it shows
that the disk does indeed settle into the expected equilib-
rium configuration, which occurs when the viscous and res-
onant torques balance, ie, τ = 0 everywhere (see Eqn. 8),
which has solution

`(x) = e−1/|x−xs|3, (10)

which is the dashed curve in Fig. 1. Another test is an-
gular momentum conservation, which is preserved here to
∆L/L ∼ 3×10−5.

Application: Prometheus & the A ring
Figure 2 shows a prototype simulation of Prometheus,
which orbits just outside the A ring. The matter orbiting
just right of Prometheus is the F ring, which in reality would
be confined by Pandora, but is absent from this 1–satellite
simulation. (The next generation model will handle multi-
ple satellites.) In this simulation, the A ring spreads radially
outwards, which in turn drives Prometheus and the F ring
further outwards. Note also that Pandora’s absence from
this simulation means that the simulated F ring remains un-
confined, so it too spreads radially outwards.

Figure 2: Snapshots of a system comprised of the outer A ring with Prometheus
just beyond that, and a narrow F ring orbiting beyond that. In this simulation, a com-
putational distance of ∆x = 0.6 corresponds to Prometheus’ present distance from the
A ring, ∆r = 2600 km, while the computation time ∆t = 1 corresponds to 3×109 orbits,
or 5 million years.

Sadly, the current generation of this code is still
problematic—it does not conserve the system’s angular
momentum well when the satellite migrates. In the above
run, ∆L/L was only ∼ 0.1. Note, however, that L is well
preserved when the satellite’s orbit is static—see Fig. 1.

This system is also quite interesting: Poulet & Sicardy
(2001) report that the ring torques will drive Prometheus
outwards until it crashes into Pandora in a few ∼ 10’s of
million years. However their estimate is inferred from a
static disk—one that does not evolve due to viscosity. But
if the above results are to be believed, then Fig. 2 sug-
gests that viscosity will allow the spreading A ring to ‘chase’
Prometheus. It is then possible that the ring’s viscous
timescale actually determines when Prometheus and Pan-
dora collide. Alternately, this chase might instead spawn
another generation of small satellites as the A ring spreads
further beyond Saturn’s Roche limit, which might facilitate
additional satellite formation. These and other scenarios
will be considered using an improved version of this model.

Action Plan
• improve the numerical method, particularly so that angu-

lar momentum is well preserved as satellites migrate

•generalize the code so that it can handle 2+ satellites

•adapt the code so that can also handle discrete reso-
nances from more massive satellites, like the Mimas 2:1
which maintains the inner edge of the Cassini Division

•use the code to see if small satellites (necessarily orbit-
ing deep within Saturn’s Roche limit...) might account for
gaps and plateaus seen in the rings (see Fig. 3)

•use the model to attempt to infer from the ring’s early ori-
gin from observations of its current configuration

Figure 3: Cassini press release images of the outer B ring & Cassini Division
(upper image), and gaps & plateaus in the C ring (lower image). Images from the
CICLOPS website.


