Clementine Startracker Images of the Zodiacal Light

Bonnie Cooper, Oceaneering Space Systems. Andrew Potter, National Solar Observatory Herb Zook, NASA Johnson Space Center • Joseph Hahn, Lunar and Planetary Institute

 the lunar limb is the zodiacal ight depicted as a logarithmic yrey-
scale. Many stars are seen, with the brightest being venus.

```
F
```


Figure 4.


```
M
```


Figure 5

CLEmentine observations of the zodiacal light The zodiacal light is the result of the integrated effect of sunlight scattered
off of dust particles orbiting about the Sun. To the naked eye on Earth, the off of dust particles orbititng about the sun. To the naked eye on Eattr), the
oodiacal light proiects simly above the horizon and can be seen only under zodiacal light projects dimly above the horizon and can be seen only under
very dark sky conditions, either just after dusk or before suntise. It bright-
ens toward the Sun and tow ard the plane of the eclipitic the Earth's orbital very dark sky condititons, etther ust after dusk or before sunnise. It bright-
ens toward the sun and toward the plane of the eciptic the Earth's orbital
plane). The latter onservation indicateste that most meteorids are plane.
grade orbits at relatively low inclination (< 30°) to the ecliptic plane.
The zodiacal light brightness has been very difficult to measure inside about
30 degrees lelongation from the Sun, both from the ground and from space30 degrees elongation from thes Suen, both from the trimundand drom from space-
craft in Earth orbit, because of light contamination from sunlight scattered
 Sun by the Moon, sunlight scattereed by the Earth's atmosphere beyond
lunar limb greaty brightness.
We here report the near-sun zodiacal light brightnesses obtained by the $28^{\circ} \times 43^{\circ}$ field-of-view star-tracker cameras on the Clementine spacecraat
while it was in orbit about the Moon in 1994 . Using the Moon as an whie it was in orbit about the Moon in 1994. Using the Moon as an
occulting gisk, several hundred quatity mages of the eodiacal light were
obtained in the region from about 2 to 30 degrees from the sun.

Figure 5. Zodiacal light intensity (in units of the mean brightness of the Sun) versus ecliptic longitude Allos shown is the brightness variation with angular distance from the Sun nerpendidiclalp to the Ecliptic. For reference, the full Moon is about $1.5 \times 10-6$ times as bright as the mean brightness of the Sun.

SUMMARY

The spatial density of meteoroids at 1 AU , as btained from near-earth meteoroid impact experiments, is about two meteoroids larger than 5 microns in diameer per cubic km . The corresponding cross-sectiona area per unit volume and mass per unit volume are, approximately, $2 \times 10^{-20} \mathrm{~cm}^{2} / \mathrm{cm}^{3}$ and $2 \times 10^{-22} \mathrm{~g} / \mathrm{cm}^{3}$ Under Poynting-Robertson and solar wind drag alone, one would expect the spatial density of meteoroids to approximately increase with decreasing r as r^{1}. The
Clementine data show a brightness that increases with decreasing elongation angle to the 2.4 power, which corresponds to a spatial meteoroid density that increases with decreasing distance to the Sun as $r^{1.4}$. This shows that a fair fraction of meteoroids in the inne solar system are probably directly deposited there, and do not get there via drag from near-circular orbits, such as collisional debris from main belt asteroids.

