Diagnosing Circumstellar Debris Disks

Joseph M. Hahn Space Science Institute

the edge-on debris disk orbiting β Pictoris, from Heap et al (2000)

Dusty circumstellar debris disks:

sites of ongoing planet formation? or planetesimal destruction?

the optimistic view:

• dust lifetimes \ll host star's age

AU Mic, from Fitzgerald et al 2007

- requires replenishment, presumably by unseen planetesimals
- planetesimals are the seeds of planets

but models of planetesimal collisional/accretional evolution in outer Solar System show (Stern & Colwell 1997, Kenyon 2002):

- planet formation in the $r\gtrsim 30$ AU zone is very inefficient, requiring $M_p\sim 30~{
 m M}_\oplus$ just to form a handful of Plutos
- much of the leftover mass then grinds down to dust, blown away by radiation pressure (RP) in $t\sim 500$ Myrs
- characteristic dust mass loss rate is $\dot{M}_d \sim M_p/t \sim 10^{13}$ gm/sec

Do disk observations support this finding...

that planet-formation is lossy and inefficient at $r\gtrsim 30$ AU?

To address this,

- develop a model of a debris disk
- fit to observations
- hopefully say something about the disk's prospects for planet formation

The relevant physics is described in Strubbe & Chiang (2006),

- unseen planetesimals collide & generate dust
- RP lofts smaller grains into wide orbits, $r \sim 100$'s of AU
- collisions among dust shatter grains until $R < R_{
 m blowout}$

The model:

- quantize the problem, so $\int \rightarrow \sum$
- $1 \leq N_r \leq 5$ circular planetesimal rings that produce dust at $N_\ell = 100$ longitudes
- dust have $N_R = 200$ dust size-bins
- dust production rate is power-law in size, $d \dot{N}(R) \propto R^{-q}$

Dust grains have size parameter $\beta = \frac{RP}{G} \sim 0.6/R_{\mu m}$ (if star is solar),

and dust orbit elements are simple functions of β (S&C2006):

$$a(eta) = rac{1-eta}{1-2eta}r_p \qquad ext{and} \qquad e(eta) = rac{eta}{1-eta}$$

so bound dust have $eta < rac{1}{2}$ and radii $R > R_{ ext{blowout}}$

where $R_{
m blowout} \sim 1~\mu$ m (when solar)

Dust abundance obeys rate equation:

 $N_i(t)=$ no. of grains of radius R_i in orbit $a_i,e_i, ilde{\omega}_i$

$$rac{dN_i}{dt} = P_i - \sum_j lpha_{ij} N_i N_j$$

= production - destruction

which is solved numerically for $N_i(t)$

 $lpha_{ij} = \text{probability per time for a grain in orbit } i$ to collide with grain in orbit j= function $(a_i, a_j, e_i, e_j, \tilde{\omega}_i, \tilde{\omega}_j, R_i, R_j)$

Impact must also be fast enough for grain j to shatter grain i:

$$|\mathrm{v}_j-\mathrm{v}_i|^2\gtrsim Q^\star \left(rac{R_i}{R_j}
ight)^3$$

where Q^{\star} is dust strength

Example:

 $r_p = 50$ AU p'mal ring $\dot{M}_d = 10^{13}$ gm/sec $Q^\star = 10^6$ ergs/gm (weak) I = 0.1 rad = 6°

rate equation provides scale-factors:

abundance $N_0 \propto r_p^{7/4} \sqrt{I \dot{M_d}}$

timescale $T_0 \propto r_p^{7/4} \sqrt{I/\dot{M}_d}$

⇒ heavier dust production results in a more massive debris disk that settles faster into collisional equilibrium

Dust collisional lifetimes: $T_c(R) = \frac{N(R)}{P(R)}$

when dust grains are weak, $Q^{\star} < 10^6$ ergs/gm, all collisions are destructive,

 $T_c \propto \dot{M}_d^{-1/2}$ and $T_c \propto R^{-2}$ for $R \gtrsim 2 R_{
m blowout}$

 \Rightarrow large grains have **short** lifetimes due to bombardment by abundant small grains increasing Q^* increases lifetime of large dust that are confined to planetesimal disk

Disk optical depth τ

Surface brightness (SB) of edge-on disk

 β Pic, AU Mic are seen edged-on

their SB is sensitive to asymmetry in light scattering

 $g=\int \Phi(\phi)\cos\phi d\Omega$

when g = 0 (isotropic scattering) inner SB $(x < r_{in})$ is flat if pl'tesimal disk has donut-hole

if $|g| \gtrsim 0.7$ (forward scattering), then SB has a knee-bend where LOS passes thru planetesimal disk

where ${\sf SB}(x) \propto x^{-7/2}$ indicates planetesimal r_{out}

Diagnosing β Pictoris

fit requires:

- broad planetesimal disk, $75 \lesssim r_p \lesssim 150~ ext{AU}$
- heavy dust production $\dot{M}_d \sim 3 imes 10^{15}$ gm/sec (300× higher than S&C model)
- grains are probably reflective. I assumed $Q_s = 0.7$, similar to Saturn's icy rings
 - note $SB \propto Q_s \sqrt{\dot{M}_d}$, if $Q_s = 0.1$ (dark dust) then $\dot{M}_d \uparrow imes 100$
- dust size dist' has q = 2.5, shallower than Dohnanyi q = 3.5
- dust grains are strong, $Q^{\star} \sim 10^8$ ergs/gm, to preserve large grains at $x \sim 100$ AU

• knee indicates that dust are asymmetric light scatters, $g\simeq 0.7$

Mass of β Pic Disk

Assuming Bond albedo $Q_s = 0.7$:

- $M_{dust} \simeq 11$ lunar masses
 - comparable to estimate from sub-mm observations by Holland et al (1998)
- dust cross section is $A_{dust} \simeq 2 imes 10^{20} \ {
 m km}^2$
- note star's age $t_\star \simeq 12$ Myrs, so implied mass-loss is $\dot{M}_d t_\star \sim 160~{
 m M}_\oplus!$
 - β Pic's planetesimal disk is (or was) very massive!

The prospects for planet formation at β Pic are...

- ...unclear? grim?
- the planetesimal disk is suffering heavy mass loss due to collisional grinding + blowout by RP, $\dot{M}_p \sim 13~{
 m M}_\oplus/{
 m Myr}.$
- eta Pic's planetesimal disk is or was very massive, $M_p\gtrsim 160~{
 m M}_\oplus$ in $75\lesssim r\lesssim 150$ AU zone
- I suspect that the $r\gtrsim 75$ AU zone at β Pic may be a region of planetesimal destruction, rather than a site of future planet formation

 β Pic with radial variations factored out

Next steps

- I also need to model the disk's thermal emission
 - fits to optical + sub-mm observations will allow me to pin down \dot{M}_d and Q_s with greater certainty
- will couple this debris-disk model to Stu W's planetesimal model
 - his code can track the growth and erosion of planetesimals
 - this will produce a more realistic treatment of the disk's dust production rate $\dot{M}_d(t)$ over time
 - will also allow us to infer or else constrain the unseen planetesimal disk mass with greater realism
- preprint will be available
- supported by Hubble Theory/Archive research program