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Forced Epicyclic Motion
An orbiting particle’s response to resonant
perturbations is epicyclic , with its path tracing
m radial excursion about its mean orbit
(GT82, BT87):

∣

∣

∣

∣

∆r

r

∣

∣

∣

∣

= e cos[m(θ − θsat) − ω̃]

GT82 show that

e ≃
Msat/Mplanet

|x|

where x = fractional distance from
Lindblad resonance (LR),

and longitude of periapse ω̃, measured from the satellite’s longitude θsat, is

ω̃ =

{

0◦ when particle orbits interior to LR ⇐ orbit is peri-aligned with sat’
180◦ when particle orbits exterior to LR ⇐ orbit is apo-aligned with sat’

This applies wherever the planetary ring’s internal forces (gravity, pressure, etc)

are negligible, which is not the case at the edge of a perturbed ring...
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B Ring Peculiarities

When Porco et al (1984) examined
Voyager observations of the
outer B ring, they found:

• the ring’s outer edge lies
24km beyond resonance Saturn is far downwards, while Mimas is way up.

From Porco et al (1984).

• yet the ring was peri-aligned with Mimas,
NOT apo-aligned as might be expected...

Porco et al (1984) suggested that this unusual configuration might be due to the
ring’s internal forces (gravity, pressure, viscosity).

...this curious arrangement also piqued my interest, too...
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My task:

• derive the equations of motion (EOM) for ring particles orbiting near a LR,
accounting for the sat’s perturbations (s), and rings’ internal forces (g, p, and ν).

• solve those EOM, which then provides a model that can
predict the ring’s epicyclic amplitude R and surface density σ(r, θ).

Once done, J. Spitale’s task will be to:

• fit the model to Cassini observations of these rings

Since R and σ(r, θ) will be functions of σ0 = ring’s undisturbed surface density,
c = ring particles’ dispersion velocity,
ν = ring’s viscosity,

we expect to be able to infer the ring’s physical properties from Cassini observations.

Note that the A ring provides a nice check on our work since σ0, c, ν are known there.

But the B ring is particularly interesting, since its σ0, c, ν are quite unknown.
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Proceed by solving the EOM using the strategy given in GT82.

Newton’s 2nd Law provides the acceleration on a single ring particle:

r̈ = −∇(Φplanet + Φsat) + fring

where fring = arr̂ + aθθ̂ is the acceleration due to the ring’s internal forces g, p, ν.

Then Fourier expand the perturbations:

Φsat = φm
s (r)eim(θ−θs)

ar = A0
r + Am

r eim(θ−θs)

aθ = A0
θ + ...

and note that the particle motion traces a “streamline” in the ring

r(t) → r(a, θ) = a − R(a) cos[m(θ − θs) − ω̃(a)]

that appears stationary in the reference frame that corotates with the satellite.
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Streamlines

A perturbed planetary ring can be regarded as being composed of numerous,
nested streamlines (BGT85). This approach is useful since it simplifies the
derivations of the accelerations that are due to the ring’s internal forces:

radial acceleration ar = agravity + apressure

tangential acceleration aθ = aviscosity

The particle is perturbed by nearby streamlines,
which are treated here as long straight wires having a linear density λ:

For gravity, δagrav =
2Gλ

r′ − r
=

2Gσ0(a
′)δa′

r′ − r
= gravity due to streamline a′,

so total gravity agrav =

∫

ring

δagrav = integral over σ0(a) and e(a).
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Pressure & Viscosity

To get the acceleration due to pressure,
treat the ring as a compressible, barotropic fluid:

apressure = −c2

(

1

σ

∂σ

∂r

)

where c is the particle’s dispersion velocity.

The acceleration due to viscosity ν is obtained from the viscous couple g
of Lynden-Bell & Pringle’s (1974):

aviscosity = −
∂g/∂r

2πσr2
≃ −

3

2
νΩ

(

1

σ

∂σ

∂r

)

which conveniently has the same form as pressure.

Also have to Fourier-decompose those accelerations, which is quite a chore
due to σ’s nonlinear dependence on the ring’s eccentricity gradient...
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Nonlinear Surface Density Variations

A streamline in the ring has the form

r(a, θ) = a −ℜe[Reim(θ−θs)] where R(a) = R(a)e−iω̃

where the complex quantity R is convenient,
since it communicates the streamline’s epicyclic amplitude R and orientation ω̃.

BGT85 show that a perturbed ring’s surface density varies as

σ(a, θ) =
σ0(a)

1 −ℜe[R′eim(θ−θs)]
(due to mass conservation)

where R′ =
dR

da
=

(

R′ − i
∂ω̃

∂a
R

)

e−iω̃

Noting that |R′| = BGT’s nonlinearity parameter q.

When |R′| ≪ 1, the ring is said to be linear, since the ring’s
fractional surface density variations ∆σ/σ ∝ |R′| are sinusoidal and small.

However, the perturbed edges of the A and B rings are nonlinear,
since |R′| is not small there...
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Relationship to NL Density Waves

Set wavenumber k = −
∂ω̃

∂a

so the NL parameter is R′ = (R′ + ikR) e−iω̃

When |kR| ≫ |R′| ⇒ you have a tightly-wrapped spiral density wave.
This is known as the tight-winding approximation.

In a gravitating ring, these waves want to propagate radially outwards from ILR,
but can’t here—there is no ring material there, only a gap
(e.g., Cassini Division just beyond B ring, or A ring’s outer edge).

Rather, I’m interested in ring material orbiting on the non-wave side of the ILR.

Since ω̃(a) will vary slowly with a there, |kR| ≪ |R′| and R′ ≃ R′e−iω̃ = (de/dx)e−iω̃

and σ(a, θ) ≃
σ0(a)

1 − de
dx

cos[m(θ − θs) − ω̃]

⇒ the ring’s surface density, as well as its internal forces,
are all controlled by the eccentricity gradient that the satellite excites in the ring.
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The Streamlines’ Equations of Motion (EOM)

Newton’s 2nd Law is a 2D vector equation, so it provides two EOM.

Those EOM include perturbations from satellite s, and ring g, p, and ν.

Those EOM are NL since σ = σ0/[1 − e′ cosm(θ − θs)].

They are also integro-differential equations, since
agrav requires integrating across the ring, while apress and avisc are ∝ ∂σ/∂r.

To solve these EOM:

• treat the ring as if it were composed of N discrete streamlines whose
orbits are described by ej = e(aj) and ω̃j = ω̃(aj).

• then convert agrav into a sum over all aj,

• and use finite-difference methods to handle the derivatives.

⇒ this provides a system of 2N coupled NL eqn’s for the 2N unknowns ej and ω̃j.
Solving this system of coupled equations numerically is straightforward.
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The A and B Ring’s
Sharp Edges

Another EOM is derived from the specific torque
T that the s and ν exert on a particle/streamline:

T = (r× r̈) · ẑ

= Tν + Ts ≃ Tν

since the satellite’s torque |Ts| ≪ |Tν|
is small compared to the viscous torque Tν. Outer A ring optical depth, from PDS rings node.

Note that static equilibrium requires T = 0 (or particles/streamlines drift radially),

so T ≃ Tν = rA0
ν ∝

a

σ0

∂σ0

∂a
+

2e′e′′

1 − e′2
= 0

where σ0(a) is the unperturbed ring’s intrinsic surface density.

⇒this equations says that the ring’s edge is the site where e′e′′ gets large,
which in turn causes ∂σ0/∂a to get very negative, causing the sharp edge.

Note that the satellite’s role is indirect—by perturbing the ring,
it tries to excite the viscous torque Tν,
but the torque-balance requires Tν = 0,
which drives σ0(a) → 0 at the ring’s edge.
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An A Ring Simulation

Shown is a trial solution for the outer
A ring, which is perturbed by m = 7
ILR with Janus/Epimetheus
(treated here as a single satellite)

This simulation assumes:

• σ0 = 30 gm/cm2 (Spilker etal 2004)

• ν = 20 cm2/sec (Porco et al 2007)

• c = 1 mm/sec
(eg, h = 10m, or QToomre = 2)

Saturn is far to left, while Janus/Epimetheus are far right.

This simulated ring’s epicyclic amplitude is R = 9km at its edge,
which is comparable to Voyager measurement (Porco et al 1984)
and recent Cassini measurements (Spitale et al 2008).

Model shows that increasing σ0 decreases epicyclic amplitude R at the edge.
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σ variations at the Outer A

Shown are radial cuts of the A ring’s
surface density, obtained from

σ(r, θ)

σ0
=

[

1 −
de

dx
cos[m(θ − θs) − ω̃]

]

−1

Along the satellite’s long’ (θ = θs), the
satellite’s perturbation shoves ring
matter inwards, increasing σ at the
edge.

At θ − θs = 180◦/m (apoapse),
ring matter is drawn outwards,
reducing σ there.

Saturn is far left, Janus/Epimetheus are far right.

⇒Large variations is σ are expected w/in the A ring’s outermost ∼ 10km,
due to satellite’s compression & rarefaction of the ring-edge.

Similar σ-variations should also occur in the B ring over a distance
comparable to its epicyclic amplitude, R ∼ 50km (Spitale & Porco 2006).
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Why You Might Not See
These σ Variations...

Note that the ring optical depth τ ∝ σ

And that a ring observer measures I/F
(ring’s relative surface brightness)

However I/F is NOT ∝ τ or σ

Recent photometric model of ring
particles (Porco et al, submitted) shows
that I/F saturates at τ & 0.3 from Porco et al (2008), submitted

• note that the outer edges of the A and B rings have τA ∼ 0.6 and τB ∼ 1.5

⇒The large increases in σ ∝ τ anticipated at periapse might not be visible,
due to I/F saturation.

However, the reduced σ that occurs are apoapse might be visible.

Might be more likely to observe the periapse peaks in σ at radio wavelengths,
where τ is lower.
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Summary of Results

• We have used the streamline formalism of BGT to develop a model of a
broad planetary ring that is confined by a satellite’s mth LR.

• The model accounts for the satellite’s forcing, as well as the ring’s
internal forces (g, p, and ν) that are excited by the satellite’s perturbations.

• The model provides a useful probe that will extract the ring’s
physical properties (σ0, c, and ν).

• The model rings also exhibits sharp edges, as expected (BGT82,85).

• Simulated A ring’s epicyclic amplitude is consistent with σ0 ∼ 30 gm/cm2,
similar to that inferred from density waves in the outer A (Spilker et al 2004).

• The B ring is still being examined, but preliminary results
suggests 20 . σ0 . 30 gm/cm2.
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• The ring’s internal forces can shift the resonance location,
but only by a few meters!

– so we still haven’t explained why the B ring edge lies 24km exterior to the ILR,
but we are working on that...

• Large increases in the ring-edge’s surface density are expected at periapse,
where the satellite has shoved ring material inwards.

– this might not be observable at optical wavelengths, due to I/F saturation
– instead, radio occultations might have greater success at detecting this effect.

Future Activities

Once the outer edges of the A and B rings are ‘solved’, we then intend to:

• apply the model to Saturn’s many narrow, eccentric ringlets
(eg, Huygens, Columbo, Maxwell, etc.)

• revise the streamline model in the tight-winding approximation,
and use it to investigate the many NL density waves seen in Saturn’s rings.
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