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Introduction
Saturn’s rings represents one of the Solar System’s great-
est mysteries (Fig. 1). The origin of these rings, as well as
their past and present evolution, are all poorly understood.
The youthful appearance of these rings is particularly puz-
zling; the purity of these water–ice rings due to the lack of
contamination by dark interplanetary dust suggest an ‘ex-
posure’ age that is of order 100 million years (Doyle et al.
1989). Similarly, the small satellites orbiting just beyond
the main A ring seem even younger, ∼10 million years,
due to their gravitational interactions with the rings (see be-
low). The main challenge then is to understand why these
rings appear to be so much younger than the Solar System.
The following describes a model that will track the dynami-
cal evolution of Saturn’s coupled ring-satellite system. The
goal of this modeling effort will be to determine the past
and future histories of this system, and to infer the origin of
Saturn’s rings.

Figure 1: Saturn’s rings and satellites, with other major satellites, like Dione,
Rhea, and Titan, off to the right. Art by David Seal (JPL).

The ring’s radial evolution
Saturn’s rings evolve radially due to the viscous torque that
results from the ring particles’ frequent collisions, but also
due to torques exerted by Saturn’s satellites. The rings’
evolution is described by two continuity equations, one for
the ring’s surface mass density σ(r, t), and another for the
ring’s angular momentum surface density `(r, t) = σr2Ω:
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GMSaturn/r3 is the ring’s angular velocity,
vr(r, t) is the ring’s radial velocity, and the source term on
the right is the torque density g(r, t). These two equations
can then combined into the single equation
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This is the standard equation for the evolution of a Keple-
rian disk, but written in terms of the ring’s angular momen-
tum density ` ∝ σ

√
r (see Pringle 1981). The rings’ evolu-

tion is driven by the torque density g = gν +gres that has two
parts: the viscous torque gν plus the resonant torque gres

that is due interactions with the satellites.

The viscous torque density
The viscous torque density is

gν(r, t) = − 3
2r
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where ν is the ring’s viscosity. A ring of colliding particles
has a viscosity ν ' v2

dτ/2Ω = e2
dK`/2, where vd ' edrΩ is the

ring particles dispersion velocity due to their eccentricities
ed (Goldreich and Tremaine 1982), and τ = Kσ is the ring
optical depth where K = ring opacity.

The resonant torque density
The resonant torque gres is due to the spiral density waves
that the satellites can launch at their various inner Lindblad
resonances, or ILRs (aka, mean–motion resonances). If
satellite j has a semimajor axis a j, then its mth

j ILR is at
rm j = (1−1/m j)

2/3a j. A satellite that launches a wave in the
ring will be gravitationally attracted to the resulting spiral
density pattern (see Fig. 2) and exert the torque (Goldreich
& Tremaine 1978)
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where µ j is the satellite’s mass in Saturn units, all quanti-
ties are evaluated that the mth

j resonance, fm j is a numerical
coefficient, and the sign indicates that the satellite is with-
drawing angular momentum from the rings. For simplicity

it will be assumed that the rings’ viscosity damps the wave
uniformly over a radial distance ∆ν, so the resulting torque
density at this resonance is gm j = Tm j/2πrm j∆ν.

The total torque density within the rings is thus

g(r, t) = gν +∑
j
∑
m j

gm j (5)

where the sums are over all satellites j having resonances
m j in the rings.

Figure 2: A 200× 50 km snapshot of spiral waves in Saturn’s A ring, with Sat-
urn far off to the left. Shown are spiral density waves (left) launched at Prometheus’
m = 11 ILR, and spiral bending waves launched by Mimas at its 5:3. Image from the
Cassini/CICLOPS website.

Satellite Migration
The torque on satellite j due to the waves it excites at its
ILRs is −∑m j

Tm j > 0, which causes the satellite’ semimajor
axis to expand at the rate
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where the sum is again over all of j’s ILR’s in the rings.

A simple 1–satellite model
The following will consider a very simple scenario where
the ring is sculpted by a single satellite’s mth ILR. For numer-
ical work it will be convenient to use dimensionless equa-
tions of motion. Let `1 = σ1r2

1Ω1 be the ring’s initial angu-
lar momentum density at some reference radius r1 having
an orbital period t1 = 2π/Ω(r1). The relevant dimensionless
quantities are thus `′ = `/`1, x = r/r1, with t ′ = µ2

jt/t1 being a
convenient dynamical time–unit, and g′ = g/(µ2

j`1/t1) the di-
mensionless torque density. The dimensionless dynamical
equations (2–6) then become
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m = satellite’s orbit expansion rate,

where the constants ν0 = 3πe2
dτ1/µ2

j is a dimensionless mea-
sure of the ring’s viscosity, and µr j = πσ1r2

1/M j is roughly the
ring’s mass in units of the satellite’s mass M j. Evidently the
evolution of this system is governed by three parameters:
the viscosity parameter ν0, the ring–satellite mass ratio µr j,
and the wave damping scale–length ∆′

ν .

Sculpting the rings at Mimas’ 2:1
Mimas is one of the major ring perturbers due to its mass
and proximity (see Fig. 1). Mimas’ mass is µ j = 6.8× 10−8

in Saturn units, while the A ring surface density is σ ∼ 50
gm/cm2. Thus the disk–satellite mass ratio at r1 = 2 Saturn
radii RSaturn is µr j ∼ 0.6. Because Mimas’ mass is comparable
to the rings itself, its resonant torque is powerful enough to
carve open a gap at its 2:1 resonance (i.e., its m = 2 ILR) in
the rings, which also sustains the inner edge of the Cassini
Division (e.g., Goldreich and Tremaine 1978); see Fig. 3.

Figure 3: Saturn’s rings’ normal optical depth τ versus distance r, provided by
Mark Showalter/PDS Rings Node.

Note also that the main rings’ optical depth is τ1 ∼ 1 (Fig. 3),
and the ring particles have eccentricities ed ∼ 6 × 10−8

(Burns 2005), so the viscous parameter ν0 ∼ 7 is not small,
and thus the ring’s viscosity also plays a role in the forma-
tion of this gap.

Another interesting curiosity is the radial width of the
Cassini Division, which is ∆ν ∼ 0.07RSaturn ∼ 4000 km (Fig. 3).
This is considerably wider than the usual wave–damping
scale–length of ∆ν ∼ 500 km that is observed elsewhere in
the rings. As Franklin et al. (1984) point out, the mecha-
nism that sustains this wide gap is a puzzle.

Figure 4 shows a first attempt at a numerical integration of
the equations of motion for Mimas’ interaction with the ring
at its m = 2 IRL. Initially the ring is undisturbed, but the fig-
ure shows that Mimas will have dug out an appreciable gap
in the disk after a dimensionless time t ′ = 1.5×10−4, which
corresponds to a real time of t = t ′t1/µ2

j ∼ 50 million years.
Unfortunately, the current version of the numerical code is
rather fragile—it is only reliable when the ring viscosity is
too low by ×20 and when the wave–damping length is long
by ×50, and the code does not yet allow the satellite’s orbit
to expand as it draws angular momentum out of the ring. A
more robust algorithm is still in development...

Figure 4: The ring’s angular momentum density `′ is plotted versus distance x at
selected times t ′. The satellite’s m = 2 ILR lies at xm = 1, the ring’s viscous parameter
is ν0 = 0.4, the ring–satellite mass ratio is µr j = 1, and the wave–damping scale length
is ∆ν = 0.2. Note that plots of the ring’s surface density will be similar since σ ∝ `′/

√
x.

Prometheus’ orbital migration
Prometheus is one of the small shepherd satellites that
straddle the narrow F ring (Fig. 1); Fig. 2 shows the spi-
ral density waves it launches at its m = 11 IRL in the A ring.
This tiny satellite has a mass µ j = 2.5×10−10, which boosts
the ring–satellite mass ratio to µr j ∼ 200 and the viscous pa-
rameter to ν0 = 3πe2

dτ1/µ2
j ∼ 5×105. Unlike Mimas, this tiny

satellite is not going to carve open a gap at its resonances
in the rings. Rather, the strong resonant torques is going
to rapidly expand Prometheus’ orbit faster than it can open
a gap. Indeed, the resonant torques are so powerful that
Prometheus, as well as its neighbors Pandora and perhaps
the recently–discovered Methone, will all crash into Mimas
in ∼ 20 million years (Poulet and Sicardy 2001).

Parallels with planet migration
Lastly, it is worth noting the similarities between these
satellites orbital evolution and type I & II planet migration.
Lower–mass planets tend to suffer type I migration, which
is the very rapid orbital evolution that is due to the exchange
of angular momentum that occurs as the planet launches
spiral density waves in the solar nebula gas disk (Ward
1997). This migration is usually inwards when there is disk
material on both sides of the planet’s orbit. Prometheus’
orbital evolution is type I migration, but its orbit evolves out-
wards since it is repulsed by the interior rings.

Type II migration occurs when the planet is massive enough
to open an annular gap in the solar nebula that is concen-
tric with its orbit. The planet’s orbit now co–evolves with the
viscous disk, and migrates on the viscous timescale, usu-
ally inwards (Ward 1997). Mimas’ opening of the Cassini
Division is analogous of type II behavior, and its orbit may
be evolving outwards on the rings’ viscous timescale.


