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“Machine Learning”: Lexicon & Principles I
• Artificial Intelligence (AI): the broadest term in use, referring to all attempts to 

automate human cognition. 

• Machine Learning (ML): a sub-field of AI that aims to develop “programs” or “models” 
based on analysis of large data sets. “Learning” describes the automated process of setting 
parameters in the model based on “training data”. New data are automatically processed.

• Deep Learning (DL): a branch of ML in which “neural networks” with very many layers
(“deep” networks) are trained as sequential geometric functions parameterized by learned 
“weights”. Deep learning has recently (2012++) eclipsed all other ML techniques for 
complex problems.

• Neural Network: a connected network of layers, each consisting of “nodes” 
which are “activated” by their inputs to produce outputs. Activation function is 
necessarily non-linear. “Weights” for each node are the learned quantities.   

• Machine Intelligence*: Alan Turing’s preferred term for AI that is implemented 
specifically within an electronic computing machine (“computer”). Also makes for a much 
better acronym when combined with Boulder Space Weather…

* A. M. Turing, “Computing Machinery and Intelligence,” Mind 59, no. 236 (1950): 433-460. 



Fully Connected Neural Network w ith two “hidden” layers
Andrew Ng, deeplearning.ai
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Deep Learning with Python , Chollet 2018.
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General Activation Equation for each Node
Andrew Ng, deeplearning.ai

g = non-linear activation function, e.g. tanh() or RELU() Rectified Linear Unit (RELU) Activation Function
Ian Goodfellow, www.deeplearningbook.org

e.g., “Expert Systems”, 1980s
or current “Full Physics Models”

“Symbolic AI”

Sym bolic AI Paradigm  vs. ML Paradigm
Deep Learning with Python , Chollet 2018.



“Machine Learning”: Lexicon & Principles II
• Supervised Learning: class of machine learning in which the user supplies inputs and desired output 

pairs (e.g. pre-classified examples) and the algorithm  learns how to reproduce the desired outputs.

• Unsupervised Learning: class of machine learning in which only the input is provided to the algorithm  
and it performs segmentation or pattern recognition to determ ine outputs. 

• “Classical” Machine Learning Algorithms 1990s-Present:
• K Nearest Neighbors (KNN) – simplest classification and regression algorithm . 
• Support Vector Machine (SVM) – “hyperplane” determ ination for classification or regression.
• Principal Component Analysis (PCA) – unsupervised analysis for common elements.
• Decision Trees, including “Gradient Boosting” and Ensembles – “20 Questions” networks.

• Deep Learning Algorithms ~2012-Present:
• Fully Connected Network (FCN) – earliest network architectures    classification problems.
• Convolutional Neural Network (CNN) – image and sequence analysis via convolution kernels.
• Recurrent Neural Network (RNN) – sequence processing via “memory” of previous states.
• Long Short-Term  Memory (LSTM) network – more persistent/efficient memory architecture.
• Reinforcement Learning – unsupervised learning strategy based on rewarding exploration or action.
• Generative Adversarial Network (GAN) – generator trains to “fool” a discrim inator agent.



Forward Propagation

Back Propagation

Forward and Back Propagation in a NN
Deep Learning with Python , Chollet 2018.



Convolutional Neural Network Principals
Deep Learning, Lecun, Nature 2015.

ImageNet Classification with Deep CNNs
Krizhevsky, Sutskever, & Hinton, arXiv 2011

60 m illion parameters!



LSTM Network Timeline
Deep Learning with Python , Chollet 2018.

RNN Network Timeline
Deep Learning with Python , Chollet 2018.



“Machine Learning”: Lexicon & Principles III
• Classification: type of problem in which the goal is to identify an object as a member of a 

pre-defined class.

• Object Detection: sub-type of classification problem in which an object contained in an image 

is identified from a set of pre-defined classes. 

• Dataset Segmentation:
• Training Set: the subset of the available data used to train the network, i.e. optimize the weights until 

the loss function is below some acceptable threshold. Usually the majority of the available data (90—

95%) in deep networks. 

• Validation Set: the subset of the data used to validate the current parameters and hyperparameters 

of a network. Cannot be used for Test Set since information from this set leaks into parameters and 
results in overfitting. 

• Test Set: a small subset of the available data used for final testing and error quantification. Modifying 
the network based on Test Set results turns the Test Set into a Validation Set and requires new data for 

final testing. 

• Overfitting: optim izing parameters on validation data or on too small a training set – the 

network is tuned tightly to a small subset of the data and thus performs poorly on challenge data 

introduced in testing.

• Class Imbalance: condition of a training set in which one or more classes is rare and 

therefore the network learns to predict only the common class (e.g. X-class solar flares… )



Deep Learning Examples
W hy has deep learning taken off in the last 10 years?   
• Algorithms: backpropagation (1986), dropout, batch normalization, RELU activation
• “Big Data” availability
• Hardware (GPUs and now TPUs)
• Software: Tensorflow, Theano, Keras and Python support

Am azing Exam ples to Date:
• Near human-level image classification
• Near human-level speech recognition      
• Near human-level handwriting transcription
• Near human-level language translation
• Highly accurate facial recognition
• Human-level driving ability
• Superhuman game playing ability

• Learning Atari games from scratch
• Defeat of the Go world champion

• “Creative” synthesis using GANs

• Hum an-level speech recognition
• Hum an-like speech synthesis

Google Now, Amazon Alexa
Google Duplex



Visual Attention and Caption Generation using CNN + RNN
(Xu et al., 2016)

Like humans, the system is imperfect…

What do you call a cat does it take to screw in a light bulb?
They could worry the banana.

What did the new ants say after a dog?
It was a pirate.

Why did the monsters change a lightbulb?
And a cow the cough.

What do you call a pastor cross the road?
He take the chicken.

Jokes generated by a text generating RNN
aiweirdness.com

Faces generated by a GAN (starting from  random  pixels)
www.m iketyka.com



Watch: “Something has been detected and may or may not, within some period of time, 
cause an event.”
Warning: “Something has been detected and will very likely, within some period of time, 
cause an event.”
Alert: “An event is in progress.”

*As defined and used by, e.g., NOAA/SWPC.

Event Watch Warning Alert

Flare X

Radiation 
Storm

X X

Geomagnetic 
Storm

X X X

Current Capabilities

Machine Learning in Space Weather (Flare) Prediction
Background: The Language of Forecasting

The ideal is to provide accurate, reliable, and timely quantitative probabilities for Watches and Warnings. 



Machine Learning in Space Weather (Flare) Prediction
Background: Baseline Forecasts

• Climatology Forecast: the probability of an event occurring is the average of the 
probability over the relevant period. 
For example, a climatology flare forecast would calculate the probability of an active flaring based on the probability of

flaring all recorded active regions over, say, the past and current solar cycle.
If you can’t do better than climatology, your method should be dropped. 

• Persistence Forecast: things will stay just as they are right now, i.e., no flare is 
occurring now so that’s the way it will stay.
Note that this is a very accurate forecast 90+% of the time. But it is also useless for high-impact episodic events like

solar flares.

• Recurrence Forecast: the probability of an event occurring is the based on the 
probability of conditions returning.
This is the current operational method for forecasting coronal hole high-speed streams: the Sun rotates every 27 days

so HSS events are predicted to return every 27 days.



• Classify a sunspot Active Region using the McIntosh System
Zurich Sunspot classification + penumbral development + density of medial spots

• Use a Look-Up Table (LUT) based on 40+ years of flare statistics to find the 
probability of flaring at the M1—5  or X1 level within the next 24 hours for a 
given McIntosh class.

Flare levels are based on X-ray irradiance: A, B, C, M , X

SW PC forecasts “R1— R2” = M1— M5 or “R3” = X1 “radio blackout” probabilities for 

each 24 hour period over 3-days. 

• Use human knowledge and prior skill biasing to modify probability
e.g. ”Rapid flux emergence but McIntosh C lass is not changing – increase the 

probability of R3 radio blackout in the next 24 hours from 50%  to 75% .”

Machine Learning in Space Weather (Flare) Prediction
Background: Current Operational Flare Forecasts



Machine Learning in Space Weather (Flare) Prediction
Background: Contingency Tables

• Binary categorical tasks produce either “True/Positive” or “False/Negative” results.
• “AR 10973 will flare in the next 24 hours” (P) or “AR 10973 will not flare in the next 24 hours” (N).

• Contingency Tables are used to create Skill Scores based on the relative numbers of
• True Positive (TP)
• False Positive (FP)
• True Negative (TN)
• False Negative (FN)
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Machine Learning in Space Weather (Flare) Prediction

SOHO/M DI 96 m inute data: 1996 – 2010 

21 m agnetic field properties derived by m anual definition

Cascade Correlation Neural Network with “several” hidden layers: shallow (Qahwaji &  
Colak 2006)

Binary classification problem : region is classified as flaring if it produced at least one C-, M -, 
or X-class flare in the following 24-hour period, and non-flaring if did not cause any C-, M -, or 
X-class flares in the ± 48-hour period around its observation tim e. Input “Feature Vector”



Machine Learning in Space Weather Prediction
In the solar-flare forecasting field, the two classes (non-flaring and flaring ARs) are strongly 
im balanced: there are m any m ore negative exam ples than positive ones, which reflects the 
fact that m ost ARs do not produce m ajor flares in any given 24 or 48 hour period. This class 
im balance is a m ajor issue for m ost M L algorithm s. Indeed, an M L classifier m ay strongly 
favor the m ajority class, and neglect the m inority one. In other words, always predicting that 
an AR will not flare is likely to give very good results overall. 

Li et al. (2007) and Yuan et al. (2010) used a soft m argin SVM  algorithm  to forecast solar 
flares, dem onstrating the fea- sibility of this approach. Here, we use the Scikit-Learn m odule 
im plem entation of a soft m argin SVM  in the Python program m ing language. 

It is noteworthy that using only the 4 highest-ranking param eters— the total unsigned 
current helicity, total m agnitude of the Lorentz force, total photospheric m agnetic free energy 
density, and total unsigned flux— gives roughly the sam e TSS score as the top 13 
com bined . 



Machine Learning in Space Weather Prediction
… we use a (1) SVM  and features derived from  photospheric vector m agnetic field data taken 
by the Solar Dynam ics Observatory’s (SDO) Helioseism ic and M agnetic Im ager (HM I) 
instrum ent to forecast whether an active region that produces an M 1.0-class flare or 
higher will also produce a CM E , and (2) a feature selection algorithm  to determ ine which 
features distinguish these two populations. 

Yashiro et al. (2005) showed that while m ore than 80%  of X-class flares are associated with 
CM Es, this num ber drops as a power law with decreasing flare class. On average, about 60%  
of M -class flares produce a CM E; even so, there is a great disparity across the M -class, where 
M 1.0-class to M 1.8-class flares are only ∼44%  likely to produce a CM E. As such, we have 
∼6.5 tim es m ore events in the negative class than in the positive one: our negative class 
includes 364 events, 230 of which are within the M 1-range, whereas our positive class 
includes 56, where 7 are within the M 1-range. 



Machine Learning in Space Weather Prediction
The procedures of our flare prediction m odel are as follows. 

(i) observation data are downloaded from  the web archives 
(ii) ARs are detected from  full-disk im ages of the line-of- sight 
m agnetogram , and the ARs are tracked using their tim e evolution. 
(iii) For each AR, features are calculated from  m ultiwavelength 
observations, and flare labels are attached to the solar feature 
database if an X/M -class flare occurs within 24hr after an im age. 
(iv) Supervised m achine learning is carried out with a 1 hr cadence to predict the 
m axim um  class of flares occurring in the following 24hr. 

We used three m achine-learning algorithm s for com parison: the SVM , k-nearest neighbors (k-
NN ), and extrem ely random ized trees (ERT ). 



Machine Learning in Space Weather Prediction
We resort to Random  Forest, an inherent m ulticlass classifier , to perform  flare prediction. 
RF is a general term  for the random  decision forests, an ensem ble learning technique m ainly for 
classifica- tion and regression tasks (Breim an 2001).

13 features identified by Bobra & Couvidet (2015)



Machine Learning in Space Weather Prediction
Such an approach may be useful since, at the present time, there are no 
physical models of flares available for real-time prediction.

Our goal is to use past observations of an active region to predict its 
future flaring activity. We choose to model our problem as a binary-
classification task: Will this active region produce an M- or X-class flare 
within the next T hours? For this study, we chose two values for T: 2 and 
24. 

There are many different metrics to assess the performance of a 
classification algorithm. These metrics are defined using four quantities: 
false positives (FPs), false negatives (FNs), true positives (TPs), and true 
negatives (TNs).

We focus on linear classifiers, which model the output yi ∈ {−1, 1} as a 
linear function of the input features…



How to Really Compare Flare Predictions
The focus of the workshop was on “all-clear” forecasts, nam ely predicting tim e intervals 
during which no flares occur that are over a given intensity (as m easured using the peak 
GOES 1–8 Å flux). For users of these forecasts, it can be useful to know when no event will 
occur because the cost of a m issed event is m uch higher than the cost of a false alarm . 

The data prepared and m ade available for the workshop participants constitute the basic 
level of data that was usable for the m ajority of m ethods com pared. Som e m ethods could 
m ake use of m ore sophisticated data or tim e series or a different wavelength, but the goal 
for this particular com parison is to provide all m ethods with the sam e data , so the only 
differences are in the m ethods, not in the input data. 

The database prepared for the workshop is com prised of line-of-sight m agnetic field data 
from  the newest M DI calibration (Level 1.8) for the years 2000–2005 inclusive. 



The Future

Solar eruption prediction necessarily involves spatial and temporal pattern recognition.

Therefore any successful system will be both a CNN capable of finding remote spatial

correlations and an RNN capable of finding precursor signals – if they exist at all in current
SDO/AIA and HMI data.

For example: DL fails to predict the stock market because it is a fully stochastic system with

insufficient prior information available in current datasets, i.e. no discernible precursors.

TREC strategy:
• CNN + RNN + Reinforcement Learning

• Data: all SDO AIA channels and HMI magnetogram (and dopplergram?) features at 45-720

sec cadence.

Major Challenges :

• Solar Eruption prediction (not “flares” or “CMEs” but eruptions that lead to flares and CMEs)

• Ionospheric scintillation prediction from GNSS data streams

• Geomagnetic storm  intensity prediction based on L1 incom ing data stream

• ??



Conclusions
Deep Learning systems are

(a) tensor data transformation engines trained on very large datasets – no physics involved. 
(b) outside any structured programming paradigm: data à model à pattern/prediction.
(c) characterized by millions of parameters that cannot be interpreted as physical quantities.

DL systems are not a form of empirical physical models (EPMs). EPMs are 
(a) based on the laws of physics. 
(b) within the structured programming paradigm: model + data à prediction.
(c) characterized by a few physical parameters (“NOx reaction rate”, “Flux tube expansion”, etc.).

DL systems will also not entirely replace full physics models (FPMs) since they offer little physical insight. 

DL systems can be thought of as a form of Super Observer capable of finding patterns in data that no human 
could ever detect. By detecting these patterns (or failing to…), these Super Observers can inform future 
directions in FPM and EPM efforts. 

Combined with Bayesian Probability Theory, DL networks will be capable of predicting Space Weather events 
that EPMs or FPMs cannot yet address because they are inadequate for predictive applications, e.g., Solar 
Eruptions.



Resources
General Machine Learning Books:
• Introduction to Machine Learning with Python, Andreas C. Müller & Sarah Guido, O’Reilly 2016.
• Deep Learning with Python, François Chollet, Manning 2018
• Deep Learning, Ian Goodfellow, Yoshua Bengio, & Aaron Courville, MIT Press 2018.
• Machine Learning with Tensorflow, Nishant Shukla & Kenneth Friklas, Manning 2018.

History of computing:
• Turing’s Cathedral: the Origins of the Digital Universe, George Dyson, Vintage 2012.

Bayesian Probability Theory:
• Probability Theory, the Logic of Science, E. T. Jaynes, Cambridge, 2003. 

Coursera:
• University of Michigan Data Science in Python Series: Course 3 - Applied Machine Learning
• Deep Learning, Andrew Ng  (www.deeplearning.ai)

Papers online:
• Proc. Intl. Conf. on Learning Representations (ICLR)
• Conf. on Neural Information Processing Systems (NIPS)
• Many (most?) deep learning publications are published exclusively on arXiv

Space Weather:
• Machine Learning Techniques for Space Weather, E. Camporeale, S. Wing & J. Johnson eds., Elsevier 2018.



Resources (cont.)
Key Papers in Deep Learning:
• Original backprop paper: Rumelhart, Hinton, & Williams, Nature 323, 533, 1986
• Deep Learning, Yann Lecun, Nature 521, 436, 2015.
•

Other Papers in Applied Deep Learning:
• DeepVel: Deep Learning for the estimation of horizontal velocities at the solar surface, A. Asensio Ramos et al., A & A, 604, 

A11, 2017.
• Enhancing SDO/HMI Images Using Deep Learning, C. J. Diaz Baso & A. A. Ramos, 

http://hmi.stanford.edu/hminuggets/?p=2552, 2018.
• Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets, Yunjie Liu et al., 

arXiv:1605.01156 2016.  
• Enabling large-scale viscoelastic calculations via neural network acceleration, P. M. R. DeVries et al., GRL, 44, 2017.

Software
• XGBoost library (gradient boosting machines)
• Scikit Learn 
• Tensorflow
• Theano
• Keras (API that runs on top of TensorFlow or Theano)

http://hmi.stanford.edu/hminuggets/?p=2552

