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“Machine Learning”: Lexicon & Principles |

 Artificial Intelligence (Al): the broadest term in use, referring to all attempts to
automate human cognition.

 Machine Learning (ML): a sub-field of Al that aims to develop “programs” or “models”
based on analysis of large data sets. “Learning” describes the automated process of setting
parameters in the model based on “training data”. New data are automatically processed.

* Machine Intelligence®. Alan Turing’s preferred term for Al that is implemented

specifically within an electronic computing machine (“computer”). Also makes for a much
better acronym when combined with Boulder Space Weather...

* Deep Learning (DL): a branch of ML in which “neural networks” with very many layers
(“deep” networks) are trained as sequential geometric functions parameterized by learned
“weights”. Deep learning has recently (2012++) eclipsed all other ML techniques for
complex problems.

* Neural Network: a connected network of layers, each consisting of “nodes”
which are “activated” by their inputs to produce outputs. Activation function is

necessarily non-linear. “Weights” for each node are the learned quantities.

@ * A. M. Turing, “Computing Machinery and Intelligence,” Mind 59, no. 236 (1950): 433-460. ﬁ
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Al, ML, and Deep Learning
Deep Learning with Python, Chollet 2018.

General Activation Equation for each Node
Andrew Ng, deeplearning.ai

g = non-linear activation function, e.g. tanh() or RELU()
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e.g., “Expert Systems”, 1980s
or current “Full Physics Models”
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Symbolic Al Paradigm vs. ML Paradigm
Deep Learning with Python, Chollet 2018.
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Fully Connected Neural Network with two “hidden” layers
Andrew Ng, deeplearning.ai
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Node, aka

“Perceptron”
“Features”

Rectified Linear Unit (RELU) Activation Function

lan Goodfellow, www.deeplearningbook.org
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“Machine Learning”: Lexicon & Principles Il

« Supervised Learning: class of machine learning in which the user supplies inputs and desired output
pairs (e.g. pre-classified examples) and the algorithm learns how to reproduce the desired outputs.

* Unsupervised Learning: class of machine learning in which only the input is provided to the algorithm
and it performs segmentation or pattern recognition to determine outputs.

« “Classical” Machine Learning Algorithms 1990s-Present:

K Nearest Neighbors (KNN) — simplest classification and regression algorithm.
Support Vector Machine (SVM) — “hyperplane” determination for classification or regression.

Principal Component Analysis (PCA) — unsupervised analysis for common elements.
Decision Trees, including “Gradient Boosting” and Ensembles — “20 Questions” networks.

* Deep Learning Algorithms ~2012-Present:

3

Fully Connected Network (FCN) — earliest network architecture’classification problems.
Convolutional Neural Network (CNN) — image and sequence analysis via convolution kernels.

Recurrent Neural Network (RNN) — sequence processing via “memory” of previous states.
Long Short-Term Memory (LSTM) network — more persistent/efficient memory architecture.

Reinforcement Learning — unsupervised learning strategy based on rewarding exploration or action.
Generative Adversarial Network (GAN) — generator trains to “fool” a discriminator agent.
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Forward Propagation
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Forward and Back Propagation in a NN
Deep Learning with Python, Chollet 2018.
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Back Propagation
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Convolutional Neural Network Principals
Deep Learning, Lecun, Nature 2015.
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Figure 2: An ilhssaration of the architesture of our ONN, expliitly showing the delineation of responsibelities
between the two GPUs. One GPU runs the layer-parts ot the 1op of the Higure while the other runs the layer-pans
a the botsom. The GPUs communacate only at certan layers. The network’s input is 150,528 - dimensional, and
the number of neurons in the network's remaining layers is given by 253440186, 62464, 839664 59643 264
SO0 1(KX)

@ ImageNet Classification with Deep CNNs
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Krizhevsky, Sutskever, & Hinton, arXiv 2011
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RNN Network Timeline
Deep Learning with Python, Chollet 2018.

LSTM Network Timeline
Deep Learning with Python, Chollet 2018.



“Machine Learning”: Lexicon & Principles Il

* Classification: type of problem in which the goal is to identify an object as a member of a
pre-defined class.

* Object Detection: sub-type of classification problem in which an object contained in an image
is identified from a set of pre-defined classes.

« Dataset Segmentation:

* Training Set: the subset of the available data used to train the network, i.e. optimize the weights until
the loss function is below some acceptable threshold. Usually the majority of the available data (90—
95%) in deep networks.

« Validation Set: the subset of the data used to validate the current parameters and hyperparameters

of a network. Cannot be used for Test Set since information from this set leaks into parameters and
results in overfitting.

+ Test Set: a small subset of the available data used for final testing and error quantification. Modifying
the network based on Test Set results turns the Test Set into a Validation Set and requires new data for
final testing.

° Overfitting: optimizing parameters on validation data or on too small a training set — the
network is tuned tightly to a small subset of the data and thus performs poorly on challenge data
introduced in testing.

* Class Imbalance: condition of a training set in which one or more classes is rare and
therefore the network learn ' -
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Deep Learning Examples

Why has deep learning taken off in the last 10 years?

+ Algorithms: backpropagation (1986), dropout, batch normalization, RELU activation
+ “Big Data” availability

« Hardware (GPUs and now TPUs)

+ Software: Tensorflow, Theano, Keras and Python support

Amazing Examples to Date:

* Near human-level image classification

& e e * Human-level speech recognition
* Near human-level handwriting transcription * Human-like speech synthesis

* Near human-level language translation

» Highly accurate facial recognition Google Now, Amazon Alexa

* Human-level driving ability Google Duplex
« Superhuman game playing ability

* Learning Atari games from scratch

+ Defeat of the Go world champion
* “Creative” synthesis using GANs
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What do you call a cat does it take to screw in a light bulb?
They could worry the banana.

What did the new ants say after a dog?
It was a pirate.

Why did the monsters change a lightbulb?
And a cow the cough.

What do you call a pastor cross the road?
He take the chicken.

Jokes generated by a text generating RNN
aiweirdness.com

Visual Attention and Caption Generation using CNN + RNN
(Xu et al., 2016)

A man is talking on his cell phone
while another man watches

Faces generated by a GAN (starting from random pixels)

Like h , th t is i fect... .
ike humans, the system is imperfec www miketvka com
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Machine Learning in Space Weather (Flare) Prediction
Background: The Language of Forecasting

Watch: “Something has been detected and may or may not, within some period of time,
cause an event.”

Warning: “Something has been detected and will very likely, within some period of time,
cause an event.”

Alert: “An event is in progress.”

Current Capabilities

Flare X
Radiation

iati X X
Storm

Geomagnetic X X X

Storm

The ideal is to provide accurate, reliable, and timely quantitative probabilities for Watches and Warnings.

i @ *As defined and used by, e.g., NOAA/SWPC. &

habengs
-

ALt wLaTeEe cove



Machine Learning in Space Weather (Flare) Prediction

Background: Baseline Forecasts

» Climatology Forecast: the probability of an event occurring is the average of the
probability over the relevant period.

For example, a climatology flare forecast would calculate the probability of an active flaring based on the probability of
flaring all recorded active regions over, say, the past and current solar cycle.

If you can’t do better than climatology, your method should be dropped.

» Persistence Forecast: things will stay just as they are right now, i.e., no flare is
occurring now so that’s the way it will stay.

Note that this is a very accurate forecast 90+% of the time. But it is also useless for high-impact episodic events like
solar flares.

* Recurrence Forecast: the probability of an event occurring is the based on the
probability of conditions returning.

This is the current operational method for forecasting coronal hole high-speed streams: the Sun rotates every 27 days
so HSS events are predicted to return every 27 days.

o
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Machine Learning in Space Weather (Flare) Prediction
Background: Current Operational Flare Forecasts

» Classify a sunspot Active Region using the Mcintosh System
Zurich Sunspot classification + penumbral development + density of medial spots
» Use a Look-Up Table (LUT) based on 40+ years of flare statistics to find the
probability of flaring at the M1—5 or X1 level within the next 24 hours for a

given Mcintosh class.
Flare levels are based on X-ray irradiance: A, B, C, M, X

SWPC forecasts “‘R1—R2” = M1—M5 or “R3” = X1 “radio blackout” probabilities for
each 24 hour period over 3-days.
» Use human knowledge and prior skill biasing to modify probability

e.g. "Rapid flux emergence but Mcintosh Class is not changing — increase the
probability of R3 radio blackout in the next 24 hours from 50% to 75%.”

@



Machine Learning in Space Weather (Flare) Prediction
Background: Contingency Tables

Binary categorical tasks produce either “True/Positive” or “False/Negative” results.

‘AR 10973 will flare in the next 24 hours” (P) or “AR 10973 will not flare in the next 24 hours” (N).

True Positive (TP)

False Positive (FP)
True Negative (TN)
False Negative (FN)

Contingency Tables are used to create Skill Scores based on the relative numbers of

Observed Skill Scores Accuracy
N TP + TN
Aforecast - Areference Aforecast = N
‘6 FP Aperfect - Areference
(] 67
(&)
o
o Heidke Skill Score (HSS : I'P x TN — FP x FN P FP
L FN TN _ ( ) e P x N P+FN FP+ 1N
48 1941 True Skill Score (TSS)
5]
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Machine Learning in Space Weather (Flare) Prediction

‘B A
XN 10 10

IMAGE PROCESSINGINTHE FETARYTE ERA

Solar Flare Prediction Using Advanced Feature
Extraction, Machine Learning, and Feature Selection

Omar W, Ahssed - Ramsd Qubrwa)l - Tulas Colah
Paul A, Higgios - Peter T, Gallagher -
D, Shaun Bleombickd

Input “Feature Vector”
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SOHO/MDI 96 minute data: 1996 — 2010

21 magnetic field properties derived by manual definition

Cascade Correlation Neural Network with “several” hidden layers: shallow (Qahwaji &
Colak 2006)

Binary classification problem: region is classified as flaring if it produced at least one C-, M-,

or X-class flare in the following 24-hour period, and non-flaring if did not cause any C-, M-, or
X-class flares in the + 48-hour period around its observation time.

Table § Predicion mecasures achicved from appiving machene icaming with cross-vahdation on the scg
mented and operational datasets covermng Apnal 1996 - December 2

ASSOCIAI0f Forecast-Venhicaton Measares

Methaod MSE TPR FPR TNR ENR FAR ACC

Scemenmiad oo7 ) 652 D= N 5 0D17¢ 0974
Operational 0024 ) 455 0 PN NS 0.27% 0962




Machine Learning in Space Weather Prediction

In the solar-flare forecasting field, the two classes (non-flaring and flaring ARs) are strongly
imbalanced: there are many more negative examples than positive ones, which reflects the
fact that most ARs do not produce major flares in any given 24 or 48 hour period. This class

ENDN RITHM imbalance is a major issue for most ML algorithms. Indeed, an ML classifier may strongly
favor the majority class, and neglect the minority one. In other words, always predicting that

an AR will not flare is likely to give very good results overall.

Lietal. (2007) and Yuan et al. (2010) used a soft margin SVM algorithm to forecast solar

b flares, demonstrating the fea- sibility of this approach. Here, we use the Scikit-Learn module
implementation of a soft margin SVM in the Python programming language.

P It is noteworthy that using only the 4 highest-ranking parameters— the total unsigned
current helicity, total magnitude of the Lorentz force, total photospheric magnetic free energy

density, and total unsigned flux — gives roughly the same TSS score as the top 13
combined.

]
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Machine Learning in Space Weather Prediction

...we use a (1) SVM and features derived from photospheric vector magnetic field data taken
by the Solar Dynamics Observatory’s (SDO) Helioseismic and Magnetic Imager (HMI)
@ instrument to forecast whether an active region that produces an M1.0-class flare or

MELAL TN RONAL MASS EJECTIONS USING MACHINE LEARNING METHOOS higher will also produce a CME, and (2) a feature selection algorithm to determine which
features distinguish these two populations.

Yashiro et al. (2005) showed that while more than 80% of X-class flares are associated with
CMEs, this number drops as a power law with decreasing flare class. On average, about 60%

of M-class flares produce a CME; even so, there is a great disparity across the M-class, where
M1.0-class to M 1.8-class flares are only ~44% likely to produce a CME. As such, we have

Tobe |

~6.5 times more events in the negative class than in the positive one: our negative class
includes 364 events, 230 of which are within the M 1-range, whereas our positive class

includes 56, where 7 are within the M 1-range.

]
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Machine Learning in Space Weather Prediction

iyt ce - ' ‘ The procedures of our flare prediction model are as follows.
@ (i) observation data are downloaded from the web archives
Solar Flare Prediction Model with Three Machine-dearning Algorithms using Ultraviolet (ii) ARs are detected from full-disk images of the line-of- sight
Brightening and Vector Magnetograms magnetogram, and the ARs are tracked using their time evolution.
N Nishirsha', K. Sugiors’, Y. Kubo', M. Den', § Watari', and M. bii (iii) For each AR, features are calculated from multiwavelength

observations, and flare labels are attached to the solar feature

database if an X/M-class flare occurs within 24hr after an image.
(iv) Supervised machine learning is carried out with a 1 hr cadence to predict the

maximum class of flares occurring in the following 24hr.

BDERMY S We used three machine-learning algorithms for comparison: the SVM, k-nearest neighbors (k-

f.
HIBATEIN Maghenprem NN), and extremely randomized trees (ERT).

(magretc noutrad lines )

Table 4
e Prodcnon Rosslts of X-chns Flares and M- class Flares, Neghoctng
Fesures of Previous Flare Activ it

Alporrte w w N IN
(2) X<hian Sancs

kNN 136 L IS S4340
sV 1N 2 2! S
Ex A7 4 ™ S4470
s M clve fae

LNN 0 173 67 S0
sV 1901 1% 1% 210
ERT 105 s 632 S1344

Neote. The comtmpency ables of pradiction results of Xclass flwes and oM
Chas Banes, for he theee machine dearnmg dlgorures, KNN, SYM. ad ERT
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Machine Learning in Space Weather Prediction

We resort to Random Forest, an inherent multiclass classifier, to perform flare prediction.

Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products

and the Random Forest Algorithm

Na Dy Jasm 1 " _ -

13 features identified by Bobra & Couvidet (2015)

RF is a general term for the random decision forests, an ensemble learning technique mainly for

classifica- tion and regression tasks (Breiman 2001).

RF Basary claoss

Table 4

Flare Predction Resulis (within 24 he) Using 13 SIN)HMI

Parameters nd Comparison 1o Othe

Prodation | Ofsers o ion B/CClaws (n Ins
H/C Chaw s 028
M/'X Chum AR 20N
Rocall: This work (0Tas 0.0M
Hioomte ld ¢t al ' N/A
Ahimed ¢t o | NA
Hobea & Couvidae (2015 N'A
Nishizuka ¢ L ) NA
Precivion: This work (0 75¢ 0033
Blocetie ld ¢t al " N/A
Ahmed ot Al I35 N/A

Hobea & Couvidat 1 2015) NA
Nishizuka et al (2 ) N/A
Accuracy: This work 1766 + 00238
Hloomteld et al " N/A
Ahmed et al 13 N/A
Bobea & Couvidat (2015) NA
Nishisuka ¢ (2017 N

155 This work
Bloomtield et al
Ahmed et al

Hobea & Couvidat (2
Nishizuka et al J

M/X Chss (v 16%)

TR L 10
V27N V0
074 oo
0O
oSy
O882 £ 02
O
0.7 ool
0146
0740
0417 003y
R

0.766 om
oxs
09s

0924 N
L) )

0ss2 000
05w
0si2

0.761 0oe

071 + 0002

_
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Machine Learning in Space Weather Prediction

Such an approach may be useful since, at the present time, there are no

Solar Phoys (2018) 2954
Mg cng/10.100%611207.018-1258-9 @ R physical models of flares available for real-time prediction.
Our goal is to use past observations of an active region to predict its
Flare Prediction Using Photospheric and Coronal Image future flaring activity. We choose to model our problem as a binary-
Data classification task: Will this active region produce an M- or X-class flare
within the next T hours? For this study, we chose two values for T: 2 and

24.

Eric Jonas' () - Monkca Bobra® - Vaishaal Shankar' -
J. Todd Hocksema® - Benjamin Recht!

There are many different metrics to assess the performance of a
classification algorithm. These metrics are defined using four quantities:
false positives (FPs), false negatives (FNs), true positives (TPs), and true

negatives (TNs).

We focus on linear classifiers, which model the output yi € {-1,1} asa
linear function of the input features. ..

TSS | 24h task
PR L L R
€ YN EEWE N
CRREEENT R, BF L EE

0.70 0.7% oM o
5SS

Grand Chalenge
" ’ Lk L
BPALE wraTeEe o



How to Really Compare Flare Predictions

@ The focus of the workshop was on “all-clear” forecasts, namely predicting time intervals
during which no flares occur that are over a given intensity (as measured using the peak

A CTOREF AREON OF FLAKE FUMBCASTINGMETHODS | RESULTS FROM THE “ALLACLEAR WOm kSN N ) .
GOES 1-8 A flux). For users of these forecasts, it can be useful to know when no event will

Boan A A I Soun 2 T Coran’ I Quesnnt” . O W s’ Y Youx" L oo . K T2 Mo
S Buoomes P A Maew'. P T Gasacssn’, D. A Paicosas MK Grosconin'', M. S Wimatias occur because the cost of a missed event is much higher than the cost of a false alarm.
C Baren TDass'. s b L Waunee
et ot oy Inboaios et Mtie Unerety o Bvadived Bontind. UK. Tuhmredth 0% ' The data prepared and made available for the workshop participants constitute the basic
me Wuctos Gemman Lobuons .'\. T et o 34y level of data that was usable for the majority of methods compared. Some methods could
i o G, Bt o Pyt Bity Crtirgs D iy Groom. TR000 2 utent st b Aot make use of more sophisticated data or time series or a different wavelength, but the goal
- oy TRPRPIPR— for this particular comparison is to provide all methods with the same data, so the only
Se. AL MOWS. US4 differences are in the methods, not in the input data.
. vs Sverh, Aflen ——
s e The database prepared for the workshop is comprised of line-of-sight magnetic field data

from the newest MDI calibration (Level 1.8) for the years 2000-2005 inclusive.

l
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The Future

Major Challenges:

« Solar Eruption prediction (not “flares” or “CMEs” but eruptions that lead to flares and CMEs)
* lonospheric scintillation prediction from GNSS data streams

« Geomagnetic storm intensity prediction based on L1 incoming data stream
. 77

Solar eruption prediction necessarily involves spatial and temporal pattern recognition.

Therefore any successful system will be both a CNN capable of finding remote spatial

correlations and an RNN capable of finding precursor signals — if they exist at all in current
SDO/AIA and HMI data.

For example: DL fails to predict the stock market because it is a fully stochastic system with

insufficient prior information available in current datasets, i.e. no discernible precursors.

TREC strategy:
+ CNN + RNN + Reinforcement Learning
« Data: all SDO AIA channels and HMI magnetogram (and dopplergram?) features at 45-720

sec cadence.

o
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Conclusions

Deep Learning systems are

a) tensor data transformation engines trained on very large datasets — no physics involved.
b) outside any structured programming paradigm: data - model > pattern/prediction.

(c) characterized by millions of parameters that cannot be interpreted as physical quantities.

DL systems are not a form of empirical physical models (EPMs). EPMs are
(a) based on the laws of physics.

(b) within the structured programming paradigm: model + data - prediction.
(c) characterized by a few physical parameters (“NOx reaction rate”, “Flux tube expansion”, etc.).

DL systems will also not entirely replace full physics models (FPMs) since they offer little physical insight.

DL systems can be thought of as a form of Super Observer capable of finding patterns in data that no human

could ever detect. By detecting these patterns (or failing to...), these Super Observers can inform future
directions in FPM and EPM efforts.

Combined with Bayesian Probability Theory, DL networks will be capable of predicting Space Weather events
that EPMs or FPMs cannot yet address because they are inadequate for predictive applications, e.g., Solar

Eruptions.
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Resources

General Machine Learning Books:
* Introduction to Machine Learning with Python, Andreas C. Muller & Sarah Guido, O’'Reilly 2016.

* Deep Learning with Python, Frangois Chollet, Manning 2018
» Deep Learning, lan Goodfellow, Yoshua Bengio, & Aaron Courville, MIT Press 2018.

» Machine Learning with Tensorflow, Nishant Shukla & Kenneth Friklas, Manning 2018.

History of computing:
» Turing’s Cathedral: the Origins of the Digital Universe, George Dyson, Vintage 2012.

Bayesian Probability Theory:
» Probability Theory, the Logic of Science, E. T. Jaynes, Cambridge, 2003.

Coursera:
 University of Michigan Data Science in Python Series: Course 3 - Applied Machine Learning

» Deep Learning, Andrew Ng (www.deeplearning.ai)

Papers online:
* Proc. Intl. Conf. on Learning Representations (ICLR)
» Conf. on Neural Information Processing Systems (NIPS)

* Many (most?) deep learning publications are published exclusively on arXiv

Space Weather:
» Machine Learning Techniques for Space Weather, E. Camporeale, S. Wing & J. Johnson eds., Elsevier 2018.
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Resources (cont.)
Key Papers in Deep Learning:

Original backprop paper: Rumelhart, Hinton, & Williams, Nature 323, 533, 1986
Deep Learning, Yann Lecun, Nature 521, 436, 2015.

Other Papers in Applied Deep Learning:

DeepVel: Deep Learning for the estimation of horizontal velocities at the solar surface, A. Asensio Ramos et al., A& A, 604,
A11, 2017.

Enhancing SDO/HMI Images Using Deep Learning, C. J. Diaz Baso & A. A. Ramos,
htto://hmi.stanford. bhmin ?p=2552 2018.

pplication of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets, Yunjie Liu et al.,
arXiv:1605.01156 2016.

Enabling large-scale viscoelastic calculations via neural network acceleration, P. M. R. DeVries et al., GRL, 44, 2017.

Software

PrALY wyaTeEe Cuvye

XGBoost library (gradient boosting machines)

Scikit Learn

Tensorflow

Theano

Keras (API that runs on top of TensorFlow or Theano)



http://hmi.stanford.edu/hminuggets/?p=2552

