SPACE WEATHER AND THE CURRENT SHEET SOURCE SURFACE (CSSS)MODEL

SPACE SCIENCE INSTITUTE, BOULDER, CO

SPACE WEATHER

conditions in the interplanetary medium causing disruptions to technological systems on Earth and nearby space

FAMOUS SPACE WEATHER EVENTS

December 21, 1806: Alexander von Humboldt observed his compass becoming erratic during a bright auroral event September 1, 1859: Carrington event, produced solar storm widespread disruption of telegraph service November 17, 1882: the Aurora disrupted telegraph service May 1921: one of the largest geomagnetic storms - caused worldwide disruption of telegraph service and damage to electrical equipments April 21, 2002: the Nozomi Mars Probe was hit by a large Solar Energetic Particles (SEP) event causing large-scale failure - the mission, already 3 years behind schedule, abandoned in December 2003

FAMOUS SPACE WEATHER EVENTS

August 7, 1972: large SEP event — if astronauts had been in space at the time, it would have been deadly or at least life-threatening - occurred between Apollo 16 and Apollo 17 lunar missions March 1989: geomagnetic storm — included the full array of space weather effects: SEP, Coronal Mass Ejection, Forbush decrease, ground level enhancement, geomagnetic storm, ... July 14 2000: Bastille Day event occurred near solar maximum of solar cycle 23, producing exceptionally bright aurora

Bala Poduval

SOLAR WIND

- Parker 1958 solar wind model
- above a reference height, radially directed solar wind totally controls the magnetic field
- determine this reference height to quantitatively model background heliospheric magnetic field and the solar wind speed

WHY CORONAL MODELS?

- Direct observations of coronal magnetic field challenging and limited (e.g. Dove et al., ApJ, 731, 2011; Bak-Steslicka et al., ApJL, 770, 2013)
- Models that extrapolate the observed photospheric magnetic field into the corona and beyond

MODELS OF THE CORONA

Potential Field Source Surface (PFSS) model NonLínear Force Free (NLFF) model Magnetohydrostatic (MHS) models — Current Sheet Source Surface (CSSS) model Magnetohydrodynamic (MHD) models

PFSS MODEL

Schatten et al., 1969; Altschuler & Newkirk, 1969 corona: current free between photosphere and source surface (2.5 Rsun: Hoeksema, 1984; Ph.D. Thesis) coronal magnetic field - computed from scalar potential obeying LaPlace's law popular model - addresses a variety of problems e.g. Schrijver & DeRosa, 2003; Luhmann et al., 2009 Presented at University of Oulu Bala Poduval 28 October 2014

SOLAR WIND ORIGIN

Fast wind - coronal holes - open magnetic field Slow - near streamers - closed magnetic field Wang & Sheeley, 1990s All the solar wind originate from coronal holes (CH) fast wind - center slow wind - near the boundaries

Bala Poduval

Presented at University of Oulu

SOLAR WIND ORIGIN

solar wind speed α 1/fte $fte = \left(\frac{R_{phot}}{R_{ss}}\right)^2 \frac{B_{r(phot)}}{B_{r(ss)}}$

fte — flux tube expansion factor — between
 photosphere and source surface;

Rphot; Rss – radii of photosphere & source surface

Br(phot); Br(ss) – magnetic field

Presented at University of Oulu

WANG-SHEELEY-ARGE MODEL

WSA: Arge and Pízzo, JGR, 105, 2000

 $v = 265.0 + (1.5/(1+f_{1})) * (5.8 - 4.0 * \exp(9(2.5)))^{2}$ (from McGregor et al., JGR, 113, 2008) f_s - flux expansion factor ϑ_{h} - the angular distance of the magnetic field foot point from the nearest coronal hole boundary

Bala Poduval

Presented at University of Oulu

WSA/ENLIL

ENLIL: state-of-the-art space weather prediction model of NOAA - Space Weather Prediction Center WSA provides ambient solar wind at the inner boundary of ENLIL 1 - 4 day advance warnings of geomagnetic storms caused by earth-directed CMEs & quasi-recurrent solar wind structures error: 1-2 days

major single source: WSA background solar wind, due to intrinsic flaws in PFSS model (e.g. Pizzo et al., Space weather, 2012) reduce error & improve inner boundary conditions of ENLIL

NEED OF ALTERNATE MODEL

- corona not strictly current free large-scale
 plasma structures above 1.5 R_{sun} —> interaction
 between magnetic field and electric currents
- potential field over simplification
- PFSS limitations —> uncertainties in the footprint locations of solar wind source regions — a few tens of degrees in longitude (Poduval & Zhao, JGR 109, 2004: more quantitative analysis underway)

GEOMETRY OF CSSS MODEL

BOGDAN & LOW 1986 obtained solution to magnetostatic equilibrium — electric currents flowing perpendicular to gravity (1/r²) everywhere

spherical harmonic expansion Zhao & Hoeksema 1995 developed CSSS model; includes - effects of volume & sheet currents and source surface

CSSS MODEL

$$J = \frac{1}{\mu_0 r} [1 - \eta(r)] \left[\frac{1}{\sin(\theta)} \frac{\partial^2 \phi}{\partial \phi \partial r} \hat{\phi} - \frac{\partial^2 \phi}{\partial \theta \partial r} \hat{\phi} \right]$$

and

$$B = -\eta(r)\frac{\partial\phi}{\partial r}\hat{r} - \frac{1}{r}\frac{\partial\phi}{\partial\theta}\hat{\theta} - \frac{1}{\sin(\theta)}\frac{\partial\phi}{\partial\phi}\hat{\phi}$$
(2)

(1)

28 October 2014

where, μ_0 is the magnetic permeability, $\eta(r) = 1 + (a/r)^2$ and $\phi(r, \theta, \phi)$ is a scalar function determined by the boundary conditions at the photosphere and corona (Zhao and Hoeksema, 1995).

CSSS MODEL

inner region

$$\Phi = \sum_{n=1}^{N_{\odot}} \sum_{m=0}^{n} R_n^{\odot}(r) P_n^m(\cos\theta) (g_{nm}^{\odot} \cos m\phi + h_{nm}^{\odot} \sin m\phi)$$
(3)

$$R_n^{\odot}(r) = \frac{R_{\odot}(1+a)^n}{(n+1)(r+a)^{n+1}}$$
(4)

middle region

$$\Phi = \sum_{n=0}^{N_c} \sum_{m=0}^n R_n^c(r) P_n^m(\cos\theta) (g_{nm}^c\cos m\phi + h_{nm}^c\sin m\phi)$$

outer region extrapolate computed B out into the heliosphere because

 $B_{\theta}(R_{\rm ss}, \theta_{\rm ss}, \phi_{\rm ss}) = B_{\phi}(R_{\rm ss}, \theta_{\rm ss}, \phi_{\rm ss}) = 0$

Bala Poduval

Presented at University of Oulu

COMPARISON OF MODELS

PFSS

- source surface 2.5 Rsun
- magnetic field at SS: open
 & constrained to be radial
- Coronal magnetic field: latitudinally structured
- Predicts polarity, but strength in terms of total unsigned flux crossing SS

• Free to vary: 14 - 15 Rsun

• Open at cusp surface 2.5 R_{sum} but not radíal untíl SS

CSSS

- uniform no lat/lon
 dependence consistent with
 observations (Smith & Balogh
 1995, 2003; Acuña, 2008)
- Can predict HMF strength & polarity

PRESENTWORK

we used CSSS/PFSS models to compute FTE use the speed-FTE relationship

of Wang-Sheeley to predict solar wind speed

Bala Poduval

METHOD

Step 1: map observed solar wind back to corona $\varphi_0 = \varphi_R + \frac{R\Omega}{V_R}$ & $\vartheta_0 = \vartheta_R$ $\vartheta_{0}, \varphi_{0}$ – latitude & longitude at source surface ϑ_R, φ_R – at a distance R from Sun Ω – angular rotation of the Sun V_R – the solar wind velocity at R – we used the daily averaged value

METHOD

Step 2: map SS locations back to photosphere along open field lines using CSSS & PFSS models Computed FTE at each solar wind source & predicted solar wind speed using WS relationship

Speed	FTE
> 750	< 4.5
650 - 750	4.5 - 8
550 - 650	8 - 10
450 - 550	10 - 20
< 450	> 20

Bala Poduval

Presented at University of Oulu

QUADRATIC FUNCTION

SOLAR WIND PREDICTION

the quadratic function is used for all the subsequent solar wind speed predictions

used the same functional form
 for both PFSS and CSSS models

RMSE

Evaluate performances of PFSS and CSSS models

Root Mean Square Error (RMSE) between observed and predicted speeds

RMSE ratio = RMSE_{PFSS}/RMSE_{CSSS}

Bala Poduval

SKILLSCORE

skill =
$$1 - \frac{MSE}{MSE_{ref}} * 100$$

MSE: Mean Square Error

Owens et al., JGR, 110, 2005

METRIC OF ACCURACY correlation coefficient - inadequate - good correlation not necessarily imply causality synoptic map CSSS PFSS corcoft > 0.5 WSO&NSO 15% 24% mean cor coft 0.23 NSO 0.12 mean cor coft WSO 0.15 0.13

Presented at University of Oulu

Bala Poduval

Presented at University of Oulu

CONCLUDING REMARKS For a given synoptic map: CSSS model performs 1.5 – 2 times better than PFSS and WSA/ENLIL taking RMS error as the metric of accuracy With high resolution, high quality HMI data, CSSS predictions will be more accurate

Bala Poduval

Presented at University of Oulu

CONCLUDING REMARKS

to establish Sun - Solar wind connectivity: mapped observed solar wind back to corona and predicted speed using magnetic field properties at the foot points represented by FTE

PFSS: solar wind mapped back to 2.5 Rsun CSSS: 15 Rsun — avoids the region below Alfven critical point - where SW is still accelerating

CONCLUDING REMARKS

PFSS: magnetic field <u>constrained to be radial</u> at 2.5 Rsun —>larger uncertainties in the photospheric foot points

CSSS: magnetic fields allowed to be nonradial between 2.5 R_{sun} and 15 R_{sun}

Better performance of CSSS model indicates solar wind sources are traced more accurately — nearly twice better than PFSS & WSA/ENLIL

Bala Poduval

Presented at University of Oulu

CONCLUDING REMARKS

source surface location in the CSSS model is free to vary — a great advantage — can be placed outside Alfven critical point the coronal and heliospheric magnetic field strengths can be computed/predicted and compared with in situ measurements Solar Orbiter and Solar Probe Plus provide information on coronal conditions within 40 R_{sun} – CSSS predictions can be tested ... Bala Poduval