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ENSEMBLE MODELS

DECISION TREES
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ENSEMBLE MODELS
DECISION TREES

Mean Radar Reflectivity| No Downdraft Speed
<43 dBZ? Standard Deviation
<0.77 m/s?
Yes No
Yes
No

Max Lifted Condensation Lvel 850 mb Specific Humidity
<287 m? < 15.57 g/kg?

850 mb Specific Humidity | |Mean Lifted Condensation Level Mean Updraft Speed
<7.29/kg? <332 m? <= 13 m/s?

Fic. |. An example of a decision tree for predicting if hail will occur. A version
of this decision tree first appeared in Gagne (2016).
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MA‘CHINE LEARNING

Scikit-Learn CIJensor‘F [OW
a free ML ﬁ’ﬁmry for Tytﬁon

KERAS

ar cyaen SOUrCe

S(ycrware [iﬁmry

an cyoen SOUrce contains various cfassyﬁ’cau’on,
cgression & cfustzring a@om’tﬁms




ENSEMBLE MODELS

max_aept max features = sqrt (n_features)
. the number of = =
. n_features input features Lo regression
- learning_rate ° controls over- max features =n features

fitting




ENSEMBLE MODELS

max_features = sqrt (n_features)

. for regression
’ max_features =

. n_fe atures = over 50 maxfeatures = nfeatures

RF can be Para”elizecl across multiple CPU cores, esl:)ec 3y on large dat

we haven't implementecl it in our Prcsent stuclg




ENSEMBLE MODELS

HYPERPARAMETERS

- N estimator =50 - n_estimator =10
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GRADIENT BOOSTING REGRESSOR

ML method

Persist

Mean

Median

> 95%

Gradient Boosting confidence level

Adaptive Boost
Extra Trees

Random Forest




GRADIENT BOOSTING
REGRESSOR

2016

— OMNI Solar wind data
—_ Geomagnetic data (14 UUSGS stations)

. KP index

Prediction lead time: % hr
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GRADIENT BOOSTING REGRESSOR

GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls",
ZO] 6 max_depth=3, max features=None, max_leaf nodes=None,

min_samples leaf=1, min_samples split=2,

min_weight fraction leaf=0.0, n_estimators=100,

— OMNI Solar wind data S ase o O3 orecast e
— Geomagnetic data
(14 USGS stations)

Field mag avg, nT
, Proton density, n/cc

— KP index
SHU Z

HON_X

HON_Y

C:l . . l C:l ) h Bz, nT (GSM)
Prediction lead time: 5 hr it

FRN:Z

Flow speed, km/s

S|IG_ Z

NEW Z

SHU Y




ENSEMBLE

RandomForestRegressor(bootstrap=True, criterion="'mse’', max_depth=None,
max_features="auto’, max_leaf nodes=None,
min_impurity decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight _fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0, warm_start=False) for 03h forecast

K_p

SG_X

Field mag avag, nT
SG Z

FRN_Z

ExtraTreesRegressor(bootstrap=False, criterion='mse’, max_depth=None,
max_features="auto’, max_leaf nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,

GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls',
max_depth=3, max_features=None, max_leaf nodes=None,
min_samples leaf=1, min_samples_split=2,
min_weight fraction_leaf=0.0, n_estimators=100,
presort="auto', random_state=None, subsample=1.0, verbose=0,
warm_start=False) for 03h forecast

1 1 1

K_p
Vx, km/s, GSE
SIG_X
Field mag avg, nT
Proton density, n/cc
GUA_X

SHU Z

HON_X

HON X min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
Gu A-X oob_score=False, random_state=None, verbose=0, warm_start=False) for 03h forecast
GUA Z
Vx, km/s, GSE
HON_Y K p
GUA Y 9G_X
SHU Z HON_X
HON _Z 362
= HON_Y
TCZ GUA X
NEW Z GUA 7 AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss='linear’,
SHU—Y SHU 7 n_estimators=50, random_state=None) for 03h forecast

HON_Y
Bz, nT (GSM)
GUA_ Y
FRD_Y
FRN_Z
Flow speed, km/s
S|G_Z

NEW_Z

SHU Y

FRD Z
BOU Z

GUA Y

SG Y K_p
2 ¥ TUC Z 7
Proton density, n/cc = 9G_X
HON_Z .
= Field mag avg, nT
Ty HON_Y
BSL X =

Vx, km/s, GSE
TimeOfDay

FRD X

NEW Z

SG Z

HON_Z

NEW._Y

Proton density, n/cc
FRN_Z

NEW X

By, nT (GSE,GSM)
HON_X

By, nT (GSM)




GRADIENT BOOSTING REGRESSOR

= Ground Truth K p
¢+ Persist
DummyRegressorMean
« GradientBoostingRegressor100

Ue il 1

il

200 300 400
Hours since 2016-10-25T00:00:00




KP INDEX

Estimated Planetary K index (3 hour data) Begin: 2003 Oct 29 0000 UTg ~ Estimated Planetary K index (3 hour data) Begin: 2017 Aug 08 0000 UTG
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LONG SHORT-TERM MEMORY (LSTM)

JAN tHPC of recurrent neural network (RNN) , de\/eloped in 1997 bg

Hochreiter & Schmidhuber

— Time series Precliction __Natural language Processing

—_ Robotics mHanclwriting recognition

— Grammar Ieaming F- Rhgthm learning

— Music coml:)osition

Google APPIC
. Speech recognition onSmart Quicldyl:)e functions on iPhone

Phones & Sir

. Google translate . Amazon Alexa



LONG SHORT-TERM MEMORY (LSTM)

@ output

ho, h., .,
(X, (X,

block

input @ @

Recurrent Neural Networks
have loops

b,
X

Chain-like nature of RNNs make them suitable for time series data



LONG SHORT-TERM MEMORY (LSTM)

— can learn tasks requiring memol
thousands or even millions of

aps exist between signiﬁca nt events
mixed low & lﬂigln Frequencies




LONG SHORT-TERM MEMORY (LSTM)

2016 OMNI Solar wind data __ Ground Truth Bz
____ Predicted
ngerparameters 'll
batch size =1
epochs = 100
neurons = 4 '
Training data: 20000 f
10 20

Testin g: 2000

Prediction lead time: 1 min 30

Time (min)
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Solar origin of geomagnetic storms and predictions

Solar activity modelled and forecasted: A new approach

Henrik Lundstedt
H. Lundstedt Lund Observatory, S-22100 Lund, Sweden

Swedish Institute of Space Physics, Scheelev. 17, SE-223 70 Lund, Sweden (Received in final form 20 April 1995: accepted 21 April 1995)
Received 6 September 2004; received in revised form 30 March 2006; accepted 30 March 2006
Abstract-——Changes of the large-scale solar magnetic fields are described and related to the occurrence of
solar coronal phenomena which are associated with geomagnetic storms. Only for the very largest geo-
magnetic storms is there agreement on the coronal origin. However, when and where coronal mass ejections
occur are still very difficult questions to answer, Artificial neural networks have been used to forecast
Abstract geomagnetic storms either from daily solar input data or from hourly solar wind data. With solar data as
input, predictions one-three days or even a month in advance are possible, while using solar wind data as

A new approach of exploring, predicting and explaining solar activity is introduced. The Lund Solar Activity Model (LSAM) is based input predictions about an hour in advance are possible. The latter predictions have been very successful.
on new wavelet methods and a hybrid physics-based neural network. The model uses as input different kinds of indicators of solar activ- Finally, the effects of geomagnetic storms on power and satellite systems are reviewed,
ity. Different time scales of solar activity are selected with scalograms and ampligrams. The processes behind the variability are revealed
with wavelet time scale spectra. How new solar laws could be discovered with neural networks and how solar theory could be coded into
neural networks are then discussed. Finally, forecasts and explanations are described with LSAM.
© 2006 Published by Elsevier Ltd on behalf of COSPAR.

GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 24, 2181, doi:10.1029/2002GL016151, 2002

SOLAR ORIGIN OF GEOMAGNETIC STORMS AND PREDICTION Overational forecasts of the seomasnetic Dst index
OF STORMS WITH THE USE OF NEURAL NETWORKS P - 2 * ‘

Al Techniques in Geomagnetic Storm Forecasting H. Lundstedt

H. LUNDSTEDT Swedish Institute of Space Physics, Lund, Sweden
Henrik Lundstedt Lund Observatory, Box 43, S-221 00 Lund, Sweden _
H. Gleisner
. . . i . . L Danish Meteorological Institute, Copenhagen, Denmark
Swedish Institute of Space Physics, Solar-Terrestrial Physics Division, Box 43, §-221 00 Lund, Sweden

P. Wintoft

This review deals with how geomagnetic storms can be predicted with the use of [§ Abstract. This review deals with how the changes of the large-scale solar magnetic fields are related Swedish Institute of Space Physics, Lund, Sweden
to the occurrence of solar phenomena, which are associated with geomagnetic storms. The review ) S ) o .

Artificial Im'elhgence (AD techmques. TOday many different Al t~eChmqu¢s have also describes how artificial neural networks have been used to forecast geomagnetic storms cither Received 22 August 2002; revised 4 October 2002; accepted 29 October 2002; published 24 December 2002.

been develo such as symbolic systems (expert and systems) and con- from daily solar input data or from hourly solar wind data. With solar data as input predictions 1-3 N . X . X o .
ped ’ ym y pe fuzzy ¥ days or a month in advance are possible, while using solar wind data as input predictions about an [1] We here present a model for real time forecasting of [4] ESA imtiated the Space Weather Programme Study in

nectionism §ystems (neural networks). Even integrations of Al techmues CXISL, SO W pour in advance are possible. The predictions one hour ahead of the geomagnetic stom index D the geomagnetic index Dst. The model consists of a 1999. We participated in the consortium led by Alcatel
called Intelligent Hybrid Systems (IHS). These SYSIemS areh ™ w aon) 35 (11pp), 2015 January 10 d0i-10.1088/0004.637x/798135 | Tecurrent neural network that has been optimized to be as  Space, where we developed a prototype forecast service of
mathematical functions underlying the operation of NON-1J e 1s. e American Astmaomical Socicty. A8 ights reserved small as possible without degrading the accuracy. It is space weather and effects, using real-time knowledge-based

and also to explain the knowledge they have leamed. V driven s ¢ neurocomputing [Lundstedt, 2002]. The Lund operational

systems exist at present. Two such examples are the Magne SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A S ' = mEmagst 1S

. - R | TRN / 7 T . SES
Forecast Model of Rice Umvcrsuy and the Lund Spaoe MACHINE-LEARNING ALGORITHM ;‘n JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 77?7, XXXX, DOI:10.1002/, arly

University. Various attempts to predict geomagnetic storm M. G. BOBRA AND S. COUVIDAT W use
W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA: couvidat @ stanford.edu e e.g

Received 2014 August I; accepted 2014 November 1; published 2015 January 8

ABSTRACT Classification of Solar Wind with Machine Learning

We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine

(SVM), and four years of data from the Solar Dynamics Observatory’s Helioseismic and Magnetic Imager, the first

instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting Enrico C an1p01-9a101. Aleo Cal‘él JOSOph E. BOI‘OVSkV?
efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based ' e ’ :
vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar
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Modulation of UK lightning by heliospheric
magnetic field polarity

T. Colak and R. Qahway

Department of Electronic Imaging and Media Communications, University of Bradford
Richmond Road, Bradford BD7 1DP, England, UK.
E mail: t.colak{@bradford.ac.uk; r.s.r.qahwaji(@brad.ac.uk

Geomagnetic Kp Index and Earthquakes

M J Owens', C J Scott, M Lockwood', L Barnard', R G Harrison', K Nicoll',
C Watt' and A J Bennett’

! Department of Meteorology, University of Reading, UK
~ Bristol Industrial and Research Associates Limited, Bristol, UK

Nobuo Urata?, Gerald Duma?*, Friedemann Freund!

Abstract. An automated neural network-based system for predicting solar
flares from their associated sunspots and simulated solar cycle 1s introduced. A
sunspot 1s the cooler region of the Sun's photosphere which, thus, appears dark
on the Sun’s disc, and a solar flare is sudden, short lived, burst of energy on the

E-mail: m.j.owens@reading.ac.uk
'Geo Cosmo Science and Research Center, NASA Research Park, Moffett Field, CA, USA
‘Central Institute for Meteorology and Geodynamics, Vienna, Austria
Email: nobuo.urata@geocosmo.org
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10P Publishing
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Evidence for solar wind modulation of
lightning

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 1, 2018 fjract

ionosphere, the solar winds generate electrical currents. O
, these currents cause magnetic field fluctuations. These fl

Deep Learning Technology for Predicting Solar
Flares from (Geostationary Operational
Environmental Satellite) Data

C J Scott, R G Harrison, M J Owens, M Lockwood and L Barnard

Department of Meteorology, University of Reading. Reading, Berkshire, UK

Tarek A M Hamad Nagem, Rami SPa ce Weather

Qahwaji, Stan Ipson
School of Electrical Engineering and
Computer Science

University of Bradford
Bradford, United Kingdom

Zhiguang Wang
GE Global Research
San Ramon, CA, United States of
America

Alaa S. Al-Waisy

School of Electrical Engineering and
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RESEARCH ARTICLE

10.1002/20175W001752

An Ensemble Kalman Filter for the Thermosphere-lonosphere

S.M. Codrescu' ', M. V. Codrescu? , and M. Fedrizzi'2

Special Section:

Low Earth Orbit Satellite

Drag: Science and Operational
Impact

FORECASTING IONOSPHERIC TOTAL ELECTRON CONTENT MAPS WITH DEEP
NEURAL NETWORKS

Abstract—Solar activity, particularly solar flares can have
significant detrimental effects on both space-borne and grounds

flare prediction system would be

repairing damage caused by suc SPACE WEATHER, VOL. 7?7, XXXX. DOI:10.1029/,

: : Noélie Cherrier, Thibaut Castaings, Alexandre Boulch
ANNALI DI GEOFISICA, VOL. 3-6, November-December 1998

A Deep-Learning Approach for Operation of an Automated
Realtime Flare Forecast
Yuko Hada-Muranushi,’ Takayuki Muranushi,” Avyumi Asai,' Daisuke

3 3 . I . 1.5
Okanohara,” Rudy Raymond,” Gentaro Watanabe,” Shigeru Nemoto, " and

ONERA, The French Aerospace Lab,
Chemin de la Huniere, 91123 Palaiseau, France

Artificial neural network applications

. Ccar 1
Kazunari Shibata

ABSTRACT

in ionospheric studies

Ljiljana R. Cander
CLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, U.K.

Abstract. Automated forecasts serve important role in space weather science, by pro-
viding statistical insights to flare-trigger mechanisms, and by enabling tailor-made fore-
casts and high-frequency forecasts. We have been operating unmanned flare forecast ser-
vice since August, 2015 that provides 24-hour-ahead forecast of solar flares, every 12 min-
utes. We report the method and prediction results of the system.

ations and Global Navigation Satellite
1d benefit from an early prediction of
y. The Total Electron Content (TEC)
e are already locally predicted by mod-
ies, but no model exists to our knowl-

Europe, the ESA Ionospheric Weather Expert Service Cen-
ter combines products from different national services to pro-
vide global and regional 1-hour TEC forecasts. However, the
records of the input data and forecasts are not published.

A global analytical TEC model has been proposed in [5],
using open source TEC data from the Center for Orbit Deter-
mination in Europe (CODE). This model is intended to apply
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USING ARTIFICIAL
INTELLIGENCE TO IMPROVE
REAL-TIME DECISION-MAKING
FOR HIGH-IMPACT WEATHER

Amy McGovern, KimeerLy L. ELMORE, DAvID JoHN GAGNE I, Sue ELLeN HaurT,
CHrisTorPHER D. KARSTENS, RYAN LAGERQUIST, TRAVIS SMITH, AND JOHN K. WiLLiaMs

&AGU PUBLICATION m

Journal of Geophysical Research: Space Physics

DeepVel: deep learning for the estimation of horizontal
velocities at the solar surface

A. Asensio Ramos'-2, I. S. Requerey’-?, N. Vitas':2

Instituto de Astrofisica de Canarias, 38205, La Laguna, Tenerife, Spain; e-mail: aasensio@iac.es
Departamento de Astrofisica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain

1
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ABSTRACT

Many phenomena taking place in the solar photosphere are controlled by plasma motions. Although the line-of-sight component
of the velocity can be estimated using the Doppler effect, we do not have direct spectroscopic access to the components that are

RESEARCH ARTICLE A neural network model of three-dimensional dynamic
1010027201 7iR028404 electron density in the inner magnetosphere

Key Points: X.Chu'' ,J.Bortnik’ _ , W.Li'"?" ,Q.Ma"? |, R.Denton®  ,C.Yue'# |, V. Angelopoulos®,

+ A neural-network-based 3-D dynamic 1 6 . 7,8 . g 10 -
electron density model is developed R. M. Thorne’ *_, F. Darrouzet®™ , P. Ozhogin™”, C. A. Kletzing” , Y. Wang ', and J. Menietti

in the inner magnetosphere
+ The DEN3D model successfully

&JAGUPUBL

Space Weather

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

'Department of Atmospheric and Oceanic Sciences, University of Califomia, Los Angeles, California, USA, “Center for Space
. Rectarn Llnivorcin, Roactan A e ot A “Norortraont ~f Dhuci nAl At o e hCoIIege.Hanover,

rtment of Earth,
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el Massachusetts,

lowa, lowa Gty, lowa,
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Application of Deep Convolutional Neural Networks for Detes
Extreme Weather in Climate Datasets

Yunjie Liu',Evan Racah',Prabhat',Joaquin Correa',Amir Khosrowshahi?,
David Lavers®,Kenneth Kunkel‘,Michael Wehner!,William Collins!
ILawrence Berkeley Lab, Berkeley, CA, US
“Nervana Systems, San Diego, CA, US
3Scripps Institution of Oceanography, San Diego, CA, US
“National Oceanic and Atmospheric Administration, Asheville, NC, US

RESEARCH ARTICLE  Probabilistic forecasting of the disturbance
10-1002720175W001627 storm time index: An autoregressive
Key Points: Gaussian process approach

« Gaussian process models offer a
tractable and flexible methodology
for probabilistic forecasting M. Chandorkar'' ', E. Camporeale’ ', andS. Wing?

- In one step ahead prediction of Dst
index, the persistence model plays an
important role in model building

- The key design decisions in building Applied Physics Laboratory, Laurel, Maryland, USA
Gaussian process predictors are
choosing the covariance structure

Abstl‘act—DeteCting extreme events in Iarge datasets 1is extreme climate events in tcrabytcs of data pr Multiscale Dynamics, Centrum Wiskunde Informatica (CWI), Amsterdam, Netherlands, 2The Johns Hopkins University

a major challenge in climate science research. Current unprecedented challenge for climate science.

and model selection algorithms Abstract We present a methodology for generating probabilistic predictions for the Disturbance Storm
Time (Dst) geomagnetic activity index. We focus on the One Step Ahead prediction task and use the OMNI
Correspondence to: hourly resolution data to build our models. Our proposed methodology is based on the technique of
M. Chandorkar, Gaussian Process Regression. Within this framework we develop two models; Gaussian Process Autoregressive

mandar.chandorkar@cwi.nl

(GP-AR) and Gaussian Process Autoregressive with eXogenous inputs (GP-ARX). We also propose a criterion to
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