

On The Mathematical Depiction of The Solar Wind Speed-Solar Magnetic Field Relationship

Parker 1958 solar wind model above a reference height, radially directed solar wind totally controls the magnetic field

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

determine this reference height to quantitatively model background IMF & solar wind speed

supersonic expansion of the solar corona out into the heliosphere

300 < speed < 450 km/s: slow solar wind, originating fromthe vicinity of closed magnetic field regions 450 > speed < 850 km/s: fast solar wind, originating from coronal holes — open magnetic field regions

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

faster speed detected — associated with CMEs

Fast wind > 450 km/s: coronal holes open magnetic field region **Slow < 450 km/s:** near streamers – closed magnetic field

NASA Goddard Space Flight Center, greenbelt, MD 2017

Y. M. Wang & N. R. Sheeley, 1990sAll the solar wind originate from coronal holes fast wind – center slow wind – near the boundaries

solar wind speed α 1/fte $fte = \left(\frac{R_{phot}}{R_{ss}}\right)^2 \frac{B_{r(phot)}}{B_{r(ss)}}$

fte — flux tube expansion factor – between photosphere and source surface;

Br(phot); Br(ss) – magnetic field

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

Rphot; Rss – radii of photosphere & source surface

SOLAR WIND ORIGIN

WSA: Arge & Pizzo, JGR, 105, 2000

$v = 265.0 + (1.5/(1+f_s)^{1/2.5}) * (5.8 - 4.0 * exp(9_b 2.5)^2))^3$

(from McGregor et al., JGR, 113, 2008)

 f_s - flux expansion factor from the nearest coronal hole boundary

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

ϑ_b - angular distance of the magnetic field footpoint

ENLIL: state-of-the-art space weather prediction model of NOAA - Space Weather Prediction Center

WSA provides ambient solar wind at the inner boundary of ENLIL

1 - 4 day advance warnings of geomagnetic storms caused by earth-directed CMEs & quasi-recurrent solar wind structures

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

Error: 1-2 days

major single source:

other:

reduce error & improve inner boundary conditions of ENLIL

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

WSA background solar wind, due to intrinsic flaws in PFSS model (Pizzo et al., Space weather, 2012)

quality of the photospheric synoptic map - input to the PFSS model

Why should one care about space weather?

Why is space weather forecast important?

Bala Poduval

changing conditions in the interplanetary medium causing disruptions to technological systems on Earth and nearby space

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

system of connected physical processes manifesting as a multitude of near-Earth disturbances

solar activity/solar wind, aurorae, geomagnetic disturbances, ..., includes studies on: and their interrelationships

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

SOGTOBGON ONTGING SILLENGS

Impact Area	Customer (examples)	Action (examples)	Cost (examples)
Spacecraft (Individual systems to complete spacecraft failure; communications and radiation effects)	 Lockheed Martin Orbital Boeing Space Systems Loral NASA, DoD 	 Postpone launch In orbit - Reboot systems Turn off/safe instruments and/or spacecraft 	 Loss of spacecraft ~\$500M Commercial loss exceeds \$1B Worst case storm - \$100B
Electric Power (Equipment damage to electrical grid failure and blackout conditions)	 U.S. Nuclear Regulatory Commission N. America Electric Reliability Corp. Allegheny Power New York Power Authority 	 Adjust/reduce system load Disconnect components Postpone maintenance 	 Estimated loss ~\$400M from unexpected geomagnetic storms \$3-6B loss in GDP (blackout)
Airlines (Communications) (Loss of flight HF radio communications) (Radiation dose to crew and passengers)	 United Airlines Lufthansa Continental Airlines Korean Airlines NavCanada (Air Traffic Control) 	 Divert polar flights Change flight plans Change altitude Select alternate communications 	 Cost ~ \$100k per diverted flight \$10-50k for re-routes Health risks
Surveying and Navigation (Use of magnetic field or GPS could be impacted)	 FAA-WAAS Dept. of Transportation BP Alaska and Schlumberger 	 Postpone activities Redo survey Use backup systems 	 From \$50k to \$1M daily for single company

Severe Space Weather Events: Understanding Societal and Economic Impacts: A Workshop Report — The National Academies Press (22 May 2008)

Bala Poduval

SOGOEGONOMICGIMPAGT

Source: Department of Homeland Security, National Infrastructure Protection Plan (http://www.dhs.gov/xprevprot/programs/editorial_0827.shtm).

Bala Poduval

interconnected infrastructures & their qualitative dependencies and interdependencies

SOGTOBGON ON MIGGINGPAGT

NASA Goddard Space Flight Center, greenbelt, MD 2017

Severe Space Weather Events: Understanding Societal and Economic Impacts: A Workshop Report —The National Academies Press (22 May 2008)

SOCTOECONOMIC SMPACT

transpolar flights rely on HF radio communications

magnetic storm/polar cap absorption (PCA) – cause ionospheric density disturbances interfere with HF, VHF, UHF radio communications and navigation signals from GPS satellites

Severe Space Weather Events: Understanding Societal and Economic Impacts: A Workshop Report The National Academies Press (22 May 2008)

SOGTOBGON ON MIGGINPLAGT

installation of supplemental transformer neutral ground resistors to reduce GIC flows inexpensive & low engineering trade-offs produce 60-70% reductions of GIC levels for storms of all sizes

Severe Space Weather Events: Understanding Societal and Economic Impacts: A Workshop Report — The National Academies Press (22 May 2008) NASA Goddard Space Flight Center, greenbelt, MD 2017 2 October 2017

Bala Poduval

RECALL THAT:

solar wind speed α 1/fte

fte — flux tube expansion factor – between photosphere and source surface;

Rphot; Rss – radii of photosphere & source surface

Br(phot); Br(ss) – magnetic field

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

Models that extrapolate observed photospheric magnetic field into the corona and beyond.

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

WHY CORONAL MODELS?

Direct observations of coronal magnetic field challenging and limited (e.g. using CoMP: Dove et al., ApJ, 731, 2011; Bak-Steslicka et al., ApJL, 770, 2013)

CORONAL MODELS

Potential Field Source Surface (PFSS) model NonLinear Force Free (NLFF) model • Current Sheet Source Surface (CSSS) model • Magnetohydrodynamic (MHD) models

CORONAL MODELS

Potential Field Source Surface (PFSS) model Schatten et al., 1969; Altschuler & Newkirk, 1969

Current Sheet Source Surface (CSSS) model Zhao & Hoeksema, 1995

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

coronal magnetic field - computed from scalar potential obeying LaPlace's law

popular – addresses a variety of problems

Schrijver & DeRosa, 2003; Luhmann et al., 2009, Wang & Shelley, 1990, 1992, 1995, etc..

BOGDAN & LOW 1986 obtained solution to magnetostatic equilibrium — electric currents flowing perpendicular to gravity $(1/r^2)$ everywhere

 $J = \frac{1}{\mu_0 r} [1 -$

and

 $B = -\eta(r)\frac{\partial\phi}{\partial r}\hat{r} - \frac{1}{r}\frac{\partial\phi}{\partial\theta}\hat{\theta} - \frac{1}{sin(\theta)}\frac{\partial\phi}{\partial\phi}\hat{\phi}$ (2)

Hoeksema, 1995).

Bogdan & Low ApJ 306, 271-283, 1986

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

$$-\eta(r)\left[\frac{1}{\sin(\theta)}\frac{\partial^2\phi}{\partial\phi\partial r}\hat{\phi} - \frac{\partial^2\phi}{\partial\theta\partial r}\hat{\phi}\right]$$

where, μ_0 is the magnetic permeability, $\eta(r) = 1 + (a/r)^2$ and $\phi(r, \theta, \phi)$ is a scalar function determined by the boundary conditions at the photosphere and corona (Zhao and

(1)

using spherical harmonic expansion & source surface technique Zhao & Hoeksema (JGR, 100, 99, 1995) developed CSSS model

- volume & sheet currents - source surface

inner region

n=1 m=0

$$R_n^{\odot}(r) = \frac{R_{\odot}(1+a)^n}{(n+1)(r+a)^{n+1}}$$
(4)

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

outer region: extrapolate B out to heliosphere because

 $B_{\theta}(R_{\rm ss}, \theta_{\rm ss}, \phi_{\rm ss}) = B_{\phi}(R_{\rm ss}, \theta_{\rm ss}, \phi_{\rm ss}) = 0$

potential field - over simplification

because corona not strictly current free

large-scale plasma structures above 1.5 R_{sun} indicate magnetic fieldelectric currents interaction

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

PFSS limitations: cause uncertainties in footpoint locations of solar wind source regions — a few tens of degrees in longitude (Poduval & Zhao, JGR 109, 2004)

PFSS

- source surface 2.5 R_{sun}
- magnetic field at SS: open & constrained to be radial
- Coronal magnetic field: latitudinally structured

 Predicts polarity, but strength in terms of total unsigned flux crossing SS

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

CSSS

- Free to vary: 14–15 R_{sun}
- Open at cusp surface 2.5 R_{sun} not radial until SS
- uniform no lat/lon dependence —> consistent with observations (Smith & Balogh 1995, 2003; Acuña, 2008)
- Can predict HMF strength & polarity

 used the speed-FTE relationship of Wang-Sheeley to obtain a mathematical description between them

 used this mathematical relationship to predict solar wind speed near the Sun

compared the predictions of the two models

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

used CSSS and PFSS models to compute FTE

WSO 5° lat/lon

Bala Poduval

Photospheric synoptic maps

SOHO/MDI 1° lat/lon

NO MDI data exist outside this period

NSO/Kitt Peak 1° lat/lon

> NSO/SOLIS 1° lat/lon

HMI 1° lat/lon

METHOD - STEP1

Step 1: map observed solar wind back to corona $\varphi_0 = \varphi_R + \frac{R\Omega}{V_R} = \vartheta_0 = \vartheta_R$ ϑ_0, φ_0 – latitude & longitude at source surface ϑ_R, φ_R – at a distance R from Sun Ω – angular rotation of the Sun V_R – the solar wind velocity at R – we used the

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

daily averaged value

Step 2

map coronal location back to photosphere along open field lines using CSSS & PFSS models

Step 3

compute FTE at each solar wind source

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

MBTFROD - STBP2-4

Step 4 predict solar wind speed using WS inverse relationship Speed FTE > 750 < 4.5 **650 – 750** 4.5 - 8.08.0 - 10.0 550 - 650 10.0 - 20.0450 - 550 < 450 > 20.0

NASA Goddard Space Flight Center, greenbelt, MD 2017

WSO a = 110.3b = -416.0c = 676.6**NSO/Kitt Peak** a = 113.9 b = -466.6c = 763.4

Poduval & Zhao 2014: ApJ, 782, L22

• the fitted quadratic function — used for all the subsequent solar wind speed predictions

• used the same function for both PFSS & CSSS models

Evaluate predictive capabilities of **PFSS & CSSS models** Root Mean Square Error (RMSE) between observed & predicted speeds RMSE RMSEratio = RMSECSSS

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

correlation coefficient - inadequate:

Good correlation not necessarily imply causality. Correlation does not capture scaling differences between observed and predicted quantities.

Observed solar wind projected back to the Sun

Predicted solar wind speed using PFSS & CSSS models

Poduval & Zhao 2014: ApJ, 782, L22

(1) increasing complexity of the solar magnetic field makes it more difficult to model

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

RMSE increases as solar cycle progresses

(2) need to optimize free parameters: (i) $R_{ss} = 15 R_{sun}$ or closer? (ii) $R_{cp} = 2.5 R_{sun}$?

height of the cusp varies over a wide range during a solar cycle (Cranmer et al., 2007; Zhao & Hoeksema, 1995)

correlation coefficient – inadequate: good correlation not necessarily imply causality

- COR COFT > 0.5 CSSS
- PFSS
- MEAN COR COFT CSSS
 - PFSS
- MEAN RMSE RATIO WSA-ENLIL/CSSS 1.9
- MEAN RMSE RATIO PFSS/CSSS

RMSE > 1.3

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

- WSO NSO
 24%
 24%
- 15% 15%
- 0.15 0.23
- 0.12 0.13

1.3 1.6

32% 55%

82% with RMSE >= 1.0

-> CSSS predi

CSSS predictions are <u>comparable</u> to or better than PFSS predictions

NASA Goddard Space Flight Center, greenbelt, MD 2017

MDT, SOLTS, WSO

NASA Goddard Space Flight Center, greenbelt, MD 2017

Anomaly

NASA Goddard Space Flight Center, greenbelt, MD 2017

and the second second

Anomaly

variation of the fitted coefficients a, b, c during CRs 1912 - 2104

Poduval, 2016: ApJ, 827, L6

NASA Goddard Space Flight Center, greenbelt, MD 2017

NASA Goddard Space Flight Center, greenbelt, MD 2017

Poduval, 2016: ApJ, 827: L6

variation of the coefficients of the fitted quadratic function during a solar cycle

$sws = a * (fte)^2 + b * fte + c$

almost linear fit

Poduval, 2016: ApJ, 827, L6

HMI data 2010–2016 $sws = a * (fte)^2 + b * fte + c$

HMI data 2010-2016

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

 $r_{cp} = 2.25R_s t_{test} > 95\%$

HMI data 2010-2016 **CRs 2098-2173** variation of the coefficients of the fitted quadratic function during a solar cycle

Investigation of the controlling influence of magnetic field on solar wind outflow

$FTE = B_r/B_r(ss) * (R/R_{ss})^2$

B_r; R B_r(ss); R_{ss}: source surface magnetic field & radius

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

: photospheric magnetic field & radius

temporal variation of FTE-SW speed relationship

Bala Poduval

— quadratic term in the best fit to SWS-FTE

nearly disappearing during certain solar rotations, giving rise to an almost linear fit

— significant in CSSS model

nearly negligible in PFSS model

to establish Sun—Solar wind connectivity:

mapped observed solar wind back to corona & predicted speed using magnetic field properties at the foot points, represented by FTE

PFSS: solar wind mapped back to 2.5 R_{sun}

where SW is still accelerating

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

CSSS: 15R_{sun} — avoids the region below Alfven critical point,

PFSS: magnetic field <u>constrained to be radial</u> at 2.5 R_{sun} —> larger uncertainties in the photospheric footpoints

CSSS: magnetic fields allowed to be <u>nonradial</u> between 2.5 & 15R_{sun}

better performance of CSSS model indicates —> solar wind sources are traced more accurately — nearly twice better than PFSS & WSA/ENLIL

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

CSSS: source surface location free to vary — great advantage can be placed outside Alfven critical point

coronal and heliospheric magnetic with in situ measurements

Bala Poduval

NASA Goddard Space Flight Center, greenbelt, MD 2017

field strengths can be computed/predicted and compared

For a given synoptic map (WSO; NSO/KittPeak):

CSSS model performs 1.5 - 2 times better than PFSS & WSA/ENLL models, taking RMS error as the metric of accuracy

NASA Goddard Space Flight Center, greenbelt, MD 2017

Bala Poduval

Solar Orbiter & Solar Probe Plus obtain information on coronal conditions within 40 R_{sun}

CSSS predictions will be useful in interpreting the results ...

Bala Poduval

