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About me

I Junior at CU Boulder, studying computer science

I At LASP, I’m a student working in the Data Systems software engineering
group

I First got interested in machine learning in a project using social media to
predict flu vaccination rates

I Outside of ML, I’m interested in software engineering, programming
languages, and statistics



Why predict solar flares?

I Solar flares are events that occur near the surface of the sun

I The energy/radiation they release can be harmful to astronauts in space or
electronics and other hardware components of satellites and aircraft

I A prediction could inform astronauts to take shelter in a place where the
radiation would not a↵ect them



Why use deep learning?

I Previous flare prediction models were being research and developed
before/or during the revolution of deep learning, using simpler algorithms
like SVM and kNN

I The application of deep learning in problems like image recognition
improved results significantly

I The goal of this project is to apply current deep learning methods to the
flare prediction problem and find success over the simpler models

Figure: Error rate of the top models from ImageNet Large Scale Visual Recognition
Competition (ILSVRC) with the depth of models. Deep networks have consistently
won the competition every year, yielding lower and lower error rates.



Previous work on flare prediction

I Bobra & Couvidat achieved a true skill statistic (TSS) of 0.761 using
features calculated from vector magnetic field data and a support vector
machine (SVM) with a RBF kernel

I Nishizuka et al. tested three di↵erent algorithms, SVM, k nearest
neighbors (kNN), and extremely randomized trees (ERT). They used
similar features to Bobra & Couvidat, although they detected active
regions with their own algorithm. Additionally, they added UV brightening
features, time derivatives of features, and flare history features. They
achieved a TSS of 0.912 using kNN



Methods - data

I To predict flares, we’ll need magnetic field data
I Michelson Doppler Imager (MDI) - for magnetic field, it can only records

line of sight, but has been recording for longer
I Helioseismic and Magnetic Imager (HMI) - along with line of sight, can

record full vector data

I HMI released a derivative product that automatically tracks active regions,
called Spaceweather HMI Active Region Patch (SHARP/HARP)

I Each SHARP is sequence of observations of an active region, giving
various spaceweather quantities calculated from the vector magnetogram

Figure: Example active region snapshot. These three images show the westward,
southward, and radial components of the vector magnetogram.



Methods - data
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Figure: Representation of collection of SHARP sequences.



Methods - data
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Figure: Representation of collection of SHARP observations.



Methods - data

I Geostationary Operational Environmental Satellite (GOES) measures
X-ray flux, the metric which classifies flares

I They provide a catalog of flare events, giving information about the event,
like time, class, and (if there was) what NOAA AR produced the event

I Most HARPs are associated with a NOAA AR, so the two data sets can
be joined on that fact

I Knowing this, we can assign a label to each SHARP observation indicating
if a {X ,M,X or M} class flare happened in {6, 12, 24, 48} hours



Methods - MLP

I Multilayer perceptrons (MLP) are the most basic and fundamental deep
learning model

I Composed of layers, each of which are functions parameterized by an
a�ne transformation and a nonlinear activation function

I In flare prediction, this model can be applied just like any of the simpler
machine learning models. The model would SHARP observations and
produce an output of whether or not a flare will occur

I Without augmenting the original data, the model has “tunnel vision”, i.e.
no information about past events

Figure: Diagram of a MLP.



Methods - LSTM

I Long short term memory (LSTM) networks are a special type of recurrent
neural network (RNN)

I RNNs process sequences; at each time step they produce an output and a
state, the state and/or output along with the next time step are fed back
into the model and the process repeats

I The state allows for the network to remember things when processing each
step

I LSTMs extend this with a concept of learnable gates, which limit how
much a certain values can flow through the model.

I The gates allow LSTMs to forget their state when it becomes irrelevant

Figure: Diagram of a LSTM cell.



Methods - LSTM

I LSTM are a natural fit for the problem, as our data is a collection of
sequences

I History of flares in a region has shown to be a strong predictor in previous
models, which LSTMs could learn

I Looking at each time step independently is removing things like how
quantities are changing over time, which LSTMs also could learn
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Methods - metrics

I According to Bobra & Couvidat, they believe that true skill statistic (TSS)
should be used when comparing the performances

I Di↵erence between recall and false alarm rate
I Compared to other metrics, TSS is independent of the class-imbalance

ratio (N/P)

TSS =
TP

TP + FN

� FP

FP + TN

Figure: Dependence of class-imbalance ratio in the test set and scores of a SVM
classifier from Bobra & Couvidat (2015).



Implementation

I Data contains SHARP observations at roughly an hourly cadence

I Preprocessed by taking the natural log of features with big scales
(max(feature) > 108) and then standardizing each feature.

I All of the models were implemented in Keras - a high level deep learning
framework

I Training models on a machine with two Titan V GPUs



First training attempt

I The first attempts at training models produced low TSS scores

I The problem was the imbalance of positive events (a flare happened within
24h) and negative events (a flare did not happen within 24h)

I Since there were so few positive events (2% of all observations are positive
events), any predictor can achieve a low loss by predicting everything as a
negative event.

I Two ways to fix this problem traditionally: weighted loss function and
resampling (through undersampling and oversampling)

Figure: A visualization of undersampling and oversampling.



Resampling in flare prediction

I Undersampling and oversampling can be applied to SHARP observations,
simply remove or duplicate individual observations

I However, applying these techniques to SHARP sequences is trickier

I Duplicating individual observations and inserting them into sequences
would ruin the structure of the sequence

I Removing sequences that contain only negative events can help balance
the classes, but not perfectly balance

I You could duplicate sequences that have positive events, but depending on
the ratio of positive events to negative events within the sequence,
duplication could lead to a bigger imbalance



Results

I Three models trained:
I MLP trained on vector time steps with weighted loss (WL) - MLP w/ WL
I MLP trained on over and undersampled vector time steps - MLP w/ RS
I LSTM trained on vector sequences with WL - LSTM w/ WL

I For reference - Bobra & Couvidat achieved 0.76 and Nishizuka et al.
achieved 0.91

Figure: TSS of trained models.



Results

I Oversampling and undersampling seem to be highly e↵ective

I The model with tunnel vision (had no information from the past) had the
highest TSS

I Possible hypotheses

I LSTMs are too complex - need a simpler way of incorporating past
information (see future experiments)

I Di↵erent activation functions - I trained the LSTMs with tanhs, while the
MLPs with ReLUs. (changing to ReLU would bring the LSTM closer to
the MLP model)

I Past information is not as useful as we think/SHARP parameters are
stronger predictors than we thought

I Bad hyperparameters



Future experiments

Figure: Regular RNN (left) vs teacher forcing RNN (right). The recurrent connection
in the teach forcing RNN comes from the output, instead of hidden layer.



Future experiments

⇤

2

4
0 1 0
1 �4 1
0 1 0

3

5 =

Figure: (Top) Example of convolution operation that detects edges. (Bottom)
Example kernels from an image recognition CNN and which images produced the
strongest activation.



Future experiments

I CNN + time information - with a CNN, we can still apply all other forms
of incorporating past information like a LSTM, teacher forcing RNN, and
a window of images. These models would be very complex in the number
of features but could possibly be the most powerful models

I Add more features from feature engineering to MLP model

I Turn into a regression problem - take a full disk magnetogram and
estimate X ray flux in the next 24h

Figure: Example of a 1 dimensional CNN. Each x would be the value of some
spaceweather quantity at some time.
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