
SPIRAL BENDING WAVES LAUNCHED AT A VERTICAL SECULAR RESONANCE

William R.Ward

Department of Space Studies, Southwest Research Institute, Suite 429, 1050Walnut Street, Boulder, CO 80302

and

JosephM. Hahn

Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058
Received 2002 June 18; accepted 2003 February 19

ABSTRACT

The excitation of spiral bending waves at a secular vertical resonance in a particle disk is examined. These
waves are one-armed spirals of very long wavelength that are launched at sites where a secondary’s nodal
regression rate matches that of the disk. Nodal bending waves usually propagate radially outward as leading
waves from a secular resonance exterior to the perturber, and inward as trailing waves from a secular
resonance that lies interior. Their pattern speed is negative, so the spiral pattern rotates in a retrograde sense.
The waves carry negative angular momentum but very little energy, and their excitation can damp the
inclination of the secondary. Here we apply this theory to the case of twomutually precessing planets orbiting
in a particle disk and compare their damping rate with the more familiar inclination excitation due to mean
motion vertical resonances. We suggest that under certain circumstances, nodal wave damping may be an
important element in maintaining planetary and/or embryo orbits in a nearly coplanar state.
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1. INTRODUCTION

The generation of spiral waves in disk-satellite systems
can cause a rapid redistribution of the angular momentum
content of the disk, as well as that of any orbiting satellites.
Numerous examples of this phenomenon exist in Saturn’s
rings, which exhibit both spiral density and spiral bending
waves that are launched by orbiting satellites. The gaps
in these rings suggest a history of angular momentum
exchanges between ring material and satellites, and similar
exchanges are expected in planet-forming disk systems. This
paper continues an investigation of the variation of a sec-
ondary’s inclination due to its interaction with a self-
gravitating disk and examines the possible role of the
m = 1, nodal spiral bending waves as a damping mecha-
nism. One of the main motivations of this study is to deter-
mine whether and under what circumstances the associated
torques can counter the excitation of the perturber’s inclina-
tion from the external vertical resonances (VRs).

This problem was examined by Borderies, Goldreich, &
Tremaine (1984, hereafter BGT84) in connection with ring-
satellite inclinations. The interaction is principally at the
sites of inner vertical resonances (IVRs) and outer vertical
resonances (OVRs), where the vertical oscillation frequency
of disk material, �(r), equals a Doppler-shifted forcing fre-
quency, m|�(r) � �ps|, with �(r) being the mean motion of
disk material and �ps representing the pattern speed of a
particular inclination term of the Fourier-expanded disturb-
ing potential. The disk response is to launch an m-armed
spiral bending wave (Hunter & Toomre 1969; Shu, Cuzzi, &
Lissauer 1983), and the reaction torques from resonances
falling interior and exterior to the orbit [i.e., the external res-
onances at rr � a(1 � 4/3m); see Fig. 1] were shown by
BGT84 to be capable of exciting the satellite’s inclination.

A similar situation had been shown to exist for a perturb-
er’s eccentricity (Goldreich & Tremaine 1980, hereafter
GT80). On the other hand, in a stellar context, Thorne (1968)
concluded that cooperative effects within a thin, differentially

rotating disk of stars augment the dynamical friction experi-
enced by a massive particle (such as a molecular cloud com-
plex), thereby damping its epicycle motions. A likely
resolution was offered by Ward (1988) and Artymowicz
(1993), who showed thatm > 1 Lindblad resonances fall into
two broad categories regarding their effect on the secondary:
the external resonances considered in GT80, and co-orbital
resonances (nearly) at the secondary’s orbit a that damp its
eccentricity, es. For a smooth disk surface density, �, through
the region of interest, the co-orbital resonances dominate and
the eccentricity decays. A similar circumstance was then
shown to prevail for VRs (see Fig. 1a), with the likely damp-
ing of the secondary’s inclination (Ward & Hahn 1994;
Artymowicz 1994).

Nevertheless, the analysis of GT80 is apropos to a grow-
ing embryo or planet that eventually opens a gap in the disk
by cannibalizing it, shepherding it, or both. This progres-
sively shuts off the co-orbital resonances, and another
source of damping must be sought if a low eccentricity or
inclination is to be maintained. GT80 pointed out that
torques associated with corotation resonances (CRs) [where
the mean motion matches the pattern speed, �(r) = �ps]
may still provide eccentricity damping and could slightly
dominate if they do not saturate (but see also Goldreich &
Sari 2003 for a counterexample). Unfortunately, there is no
analogous behavior at corotation sites in the inclination
problem that could continue to oppose excitation by the
external VRs. Instead, the resonant term simply adds a con-
stant contribution to the vertical restoring force at the CR
with no other effect, and BGT84 were unable to identify any
other process to damp satellite inclinations. This would also
appear to apply to planets or planetary embryos in a pri-
mordial planetesimal disk, and yet the nearly coplanar
nature of our own planetary system is clear testimony that
large inclinations were not excited by disk interactions.

The m = 1, nodal wave is a particular type of spiral bend-
ing wave due to a VR where the disk’s nodal precession rate
s(r) � �(r) � �(r) matches the pattern speed of the forcing
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term. An example is the nodal wave train observed in
Saturn’s C ring generated by a mixed e-I term in Titan’s
potential with pattern speed �ps = �T � �T � �T � ��T,
where the subscript ‘‘ T ’’ refers to Titan and �T is its epicycle
frequency (Rosen & Lissauer 1988; Rosen 1989). Our inter-
est here is the spiral bending wave launched at a secular res-
onance; strictly speaking, these resonances are of the same
category as the co-orbital IVRs and also damp the inclina-
tion. However, their location is sensitive to non-Keplerian
portions of the gravitational potentials and, depending on
the environment, can still lie in the disk outside of a gap
around a secondary (see Fig. 1b).

The theory of bending waves is reviewed in x 2 and
applied to an inclination secular resonance. In x 3, we con-

sider how to locate the secular resonance site and take as a
particular case two mutually precessing objects surrounded
by a particle disk. The damping of the perturbers’ mutual
inclination is quantified in x 4, where we also compare the
disk torques arising from the secular resonances with the
suite of external VRs in the disk. Our findings and their
implications for disk-planet systems are then summarized
in x 5.

2. NODAL BENDING WAVES

Consider a secondary massMs having a semimajor axis a
orbiting inside a particle disk. The secondary’s orbit is
inclined by an angle Is with respect to the disk midplane,
and for convenience the orbit is assumed circular. The par-
ticle disk has a surface density �(r) and is assumed to be
semi-infinite. The secondary’s gravitational potential may
be expanded in the Fourier series

’sðr; �; z; tÞ ¼ Re
X1
l¼�1

X1
m¼0

�lmðr; zÞeimð���pstÞ ; ð1Þ

where (r, h, z) are the usual cylindrical coordinates and t
represents time. Each Fourier component forces the disk
with a pattern that rotates at angular velocity

�ps � �s þ
�
l �m

m

�
�s ; ð2Þ

where �s is the secondary’s angular velocity and �s is its ver-
tical oscillation frequency (see, e.g., Shu et al. 1983).

2.1. Wave Amplitude

The disk can be regarded as a thin slab experiencing
vertical displacements Z(r, h, t) due to the secondary’s
perturbations. The equation for the disk’s vertical motion
is

d2Z

dt2
¼

�
@

@t
þ �

@

@�

�2

Z ¼ � @

@z
ð’p þ ’s þ ’dÞ ð3Þ

(Hunter & Toomre 1969). The vertical acceleration of
disk material due to the primary and the axisymmetric
(m = 0) portion of the secondary’s potential is repre-
sented by ��2Z. The secular resonance is excited by
terms in the Fourier expansion of @’s/@z having a pat-
tern speed independent of �s. To lowest order, only the
terms with l = 0 and m = 0 or m = 1 in equation (1)
need be retained. The first, �00, is axisymmetric and con-
tributes to �; the second, �01 exp [i(h � sst)], is nonaxi-
symmetric with pattern speed �ps = �s � �s � ss < 0,
which is the regression frequency of the secondary’s
node. The restoring force due to the disk’s self-gravity is
�@’d/@z ’ sk2�iG�(@Z/@r), where the factor sk = �1 is
chosen to satisfy boundary conditions (e.g., Shu 1984;
but see also x 3 below). We expect perturbations of Z to
take on the form Z = Re [H(r) exp [i(h � sst)]], where the
planet’s ascending node is �node = sst � �/2. Inserting
the preceding quantities into the equation of motion

Fig. 1.—Diagram contrasting the locations of first-order vertical reso-
nances for m = 2 and m = 1. The vertical axis is the resonant frequency !
normalized to the secondary’s mean motion �s; the horizontal axis is orbi-
tal distance normalized to secondary’s semimajor axis, a. The inner and
outer VRs (labeled I and O) fall where ! = � � �/m = �ps, in which
� = �(r) � s(r) is the vertical oscillation frequency and s(r) is the frequency
of nodal regression. Corotation resonance (labeled C) occurs where
! = �(r) = �ps. (a) The case where m = 2. Trailing bending waves propa-
gate away from corotation at each VR; the region of the disk between I and
O is evanescent for that pattern speed. (b) The case where m = 1. For the
faster pattern speed there is no IVR, because s < 0 while�ps > 0. However,
the corresponding OVR is still in the vicinity of the planet. For the slower
term, the pattern speed is much less and negative. The magnitudes of |ss|
and |s| are shown schematically, with |s| increasing as the planet is
approached. The IVR is where s = ss, the site of a secular resonance. This
could occur on both sides of the planet’s orbit. Trailing waves are launched
from an inside resonance, leading waves from an outside resonance. How-
ever, there is no CR or OVR for a negative pattern speed.
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yields the well-known wave equation

�sk2�iG�
dH

dr
þDH ¼ � @�01

@z
ð4Þ

applied to the m = 1 case, for which

DðrÞ � �2 � ð�� ssÞ2 ’ 2�ðss � sÞ ð5Þ

is the distance (in units of frequency squared) from the
resonance location rr where D(rr) = 0. The angular veloc-
ity of the disk, which differs slightly from Keplerian, is to
be found from the unperturbed radial force balance,

r�2 ¼ @

@r
ð’p þ ’s þ ’dÞ : ð6Þ

The solution to equation (4) is a spiral wave having the
form

HðrÞ ¼ ei
R

kðrÞdr
Z r

Zsðr0Þe�i
R

kðr0Þdr0dr0 ; ð7Þ

where the integration proceeds across the disk in the direc-
tion of wave propagation and the integration limits depend
on the boundary conditions adopted. The radial wave-
number and vertical forcing function are

kðrÞ ¼ � skD

2�G�
; ZsðrÞ ¼ � isk

2�G�

@�01

@z
; ð8Þ

respectively. The vertical accelerations due to the secondary
are

� @�00

@z
¼ �GMs

2a2
b
ð0Þ
3=2

H

a
; � @�01

@z
¼ GMs

2a2
b
ð1Þ
3=2 sin Is ð9Þ

(e.g., Shu 1984), where the Laplace coefficients that appear
in the potential expansion are defined by

b
ðmÞ
j=2 ð�Þ �

2

�

Z 1

0

cosm’ d’

ð1þ �2 � 2� cos’Þj=2
ð10Þ

with � � r/a. The vertical forcing function is thus

Zsð�Þ ¼
isk
4

ls
ld

�2b
ð1Þ
3=2ð�Þ sin Is ; ð11Þ

where ls � Ms/Mp and ld � �G�/r�2 = ��r2/Mp are the
masses of the secondary and disk normalized to the mass of
the primary,Mp.

Radiative boundary conditions require that sk = sgn (k)
(see Shu 1984), so equation (8) indicates that bending waves
propagate in the region of the disk where D(r) ’
2�(ss � s) < 0. In many (but not all) cases, |s| decreases with
distance from the corotation circle at r = a. Thus, nodal
bending waves usually propagate radially inward from a
secular resonance that lies interior to corotation, and out-
ward from an exterior secular resonance. The waves’ group
velocity is

cg ¼ m
@�ps

@k
¼ sk�G�

mðss � �Þ ð12Þ

(Toomre 1969), so an interior secular resonance generates
sk = +1 trailing waves, while an exterior secular resonance
launches sk = �1 leading waves. Recall that the pattern
speed has �ps < 0, so the spiral pattern rotates in a retro-

grade sense, whereas from equation (2) we see that all other
first-order resonances (l = m � 1) are prograde.

In Figure 1, the locations and wave properties for m = 1
and m = 2 are contrasted. The inner and outer VRs (desig-
nated I and O) fall where � � �/m = �ps; corotation reso-
nances (designated C) occur where �(r) = �ps. For m = 2
(Fig. 1a), the fast and slow pattern speeds from equation (2)
are 3�s/2 � ss/2 and �s/2 + ss/2, respectively (dotted hori-
zontal lines). For the faster pattern, VRs occur at (� � 3�s,
rIVR � 0.48a) and (� � �s, rOVR � a); for the slower pat-
tern, at (� � �s, rIVR � a) and (� � �s/3, rOVR � 2.08a).
Trailing bending waves propagate away from corotation at
each VR, and the region of the disk between I and O is eva-
nescent for that pattern speed. By contrast, for m = 1 (Fig.
1b), the fast and slow pattern speeds are 2�s � ss and ss < 0.
Inner and outer VRs fall where� � � = �ps, or s = �ps and
� � s/2 = �ps/2. For the faster pattern there is no IVR,
because s < 0 while �ps > 0. However, the corresponding
OVR is still in the vicinity of the planet, (� � �s, rOVR � a).
For the slower term, the pattern speed is much slower and
negative. In Figure 1b, the magnitudes of |ss| and |s| are
shown schematically, with |s| increasing as the planet is
approached. The IVR is where s = ss, the site of a secular
resonance. This could occur on both sides of the planet’s
orbit. However, there is no CR or OVR for a negative
pattern speed.

Most of the contribution to the integral expression for the
wave amplitude, equation (7), is due to the disk material
that lies within about a wavelength of the resonance. If the
waves are tightly wound, then the forcing function is nearly
constant across the wave generation zone and may be pulled
out of the integral. This is only marginally true for nodal
waves, but we nonetheless make that assumption for conve-
nience. Also, the wavenumber can be linearized as k = k0x,
where k0 = �skr d(D/2�G�)/dr ’ sk(ds/dr)/ld� is eval-
uated at resonance and x � (r � rr)/rr is the fractional
distance from resonance rr. In this approximation, the wave
amplitude becomes

Hð�Þ ’ �skZs

�
2�rr
k0j j

�1=2�
e�i�2ffiffiffi

�
p

Z �

�1
ei�

2

d�

�
; ð13Þ

where � � �skx(rr|k
0|/2)1/2 is roughly the distance from res-

onance in wavelength units. All other quantities are to be
evaluated at resonance, while the lower integration limit can
usually be extended to �1 with little error. The complex
quantity in brackets has a magnitude51 far upstream into
the nonwave side of the resonance, where �5�1, and has a
magnitude that approaches 1 downstream of the resonance,
where �5 1. The disk’s forced inclinations thus approach

sin Id ¼ Hj j
rr

¼ Zsj j
���� 2�ld�r ds=dr

����
1=2

¼ 1

4

ls
ld

���� 2�ld�r ds=dr

����
1=2

�2
r b

ð1Þ
3=2 sin Is ð14Þ

downstream of the resonance, where �r � rr/a.

2.2. Orbit Evolution

The generation of bending waves requires the transfer of
angular momentum between the secondary and the disk,
which in turn causes the secondary’s orbit to evolve. This
may be assessed from the secondary’s Jacobi integral
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J = Es � �psLs, where Es = �GMpMs/2a is its energy and
Ls = Ms(GMpa)

1/2 cos Is is the z-component of its angular
momentum. Since J is conserved for this system, _EEs = �ps

_LLs

and _aa = 2a2�ps
_LLs/GMpMs. The torque the disk exerts

on the secondary is _LLs. Differentiating Ls provides the rate
at which the secondary’s inclination varies:

sin Is
dIs
dt

¼ �
_LLs

Msa2�s

�
1� �ps

�s
cos Is

�
ð15Þ

(cf. BGT84). Note that because �ps = ss < 0 where |ss|5�s,
Da/a � (�ss/�s)DI2s , that is, the semimajor axis is relatively
unaffected by the nodal wave. This is not unexpected, given
that we are dealing with a secular resonance, and is another
distinguishing characteristic when compared with (m > 1)
VRs with faster pattern speeds.

The density of angular momentum transported by spiral
bending waves is j = m2(�ps � �)�|H|2/2 (Bertin & Mark
1980), so the total flux of angular momentum that waves
deliver across a ring of radius r is

F ¼ 2�rcg j ¼ skmGrð��HÞ2 ¼ 2�msk
l3dZ

2
s ðr�Þ

5
r

G r ds=drj j : ð16Þ

Since the secondary is the source of this angular momentum
flux, _LLs = �sgn( j)|F|; for m = 1, �ps = ss5�, j is negative,
_LLs is positive, and the inclination decays. Inserting these
quantities into equation (15) yields the rate at which this
resonance damps the secondary’s inclination,

1

sin Is

dIs
dt

¼ �2�
ls
ld

ðldZsÞ2��1

���� �

r ds=dr

�����s

¼ � �

8
lsld�

3
r ðb

ð1Þ
3=2Þ

2

���� �

r ds=dr

�����s : ð17Þ

We note in passing thatWard &Hahn (1998) investigated
the closely related phenomenon of spiral density waves
launched at an apsidal secular resonance. This resonance
lies where the precession, g = d~!!/dt, of the disk’s longitude
of periapse ~!! matches the corresponding precession rate of
the secondary, gs, and horizontal waves are excited in the
disk similarly to equation (14) but instead proportional to
the secondary’s eccentricity. The generation of these waves
will damp the secondary’s eccentricity, es, at the rate

1

1

es

des
dt

¼ � �

8
lsld�

3
r ðb

ð2Þ
3=2Þ

2

���� �

r dg=dr

�����s ; ð18Þ

which revises the rate given in Ward & Hahn (1998) to
account for an omitted factor of 1

2. This rate was also found
by Tremaine (1998).

2.3. Fate of theWaves

An important assumption implicit in equation (17) is that
the waves propagate out of the resonance zone without
return. We first check to see if |k|�1 remains larger than the
disk scale height, h � vdisp/�, where vdisp is the particles’ dis-
persion velocity; this is a necessary condition for the propa-
gation of long waves. From the dispersion relationship,
|k| � (|ss|�/�G�)(1 � |s/ss|) � k*(1 � |s/ss|). The wavenum-

ber initially rises as |s| drops, but it then changes more slowly
as k* � r�1(|ss|/ld�) / 1/�r3/2. Accordingly, the product
k*h � vdisp|ss|/�G�. For a particle disk in collisional equili-
brium, vdisp is comparable to the escape velocity,
vesc � (8�G	/3)1/2R � 102[R/(1 km)] cm s�1, from individ-
ual particles of characteristic radius R. Thus, the product
k*h � 3 � 10�5[R/(1 km)][r/(1 AU)]1/2(|ss|/ld�) / R/�.
For cases of interest such that |ss|/�r and ld(rr) are not too
different, inward-traveling waves are supported by the disk,
whereas outward-traveling waves may eventually violate
the criterion as � decreases sufficiently with distance. On the
other hand, solid-body accretion becomes slower with dis-
tance, making it likely that the characteristic particle size R
will decrease as well. There is a minimum dispersion velocity
of vcrit � �G�/� required for gravitational stability of the
particle layer. If vesc drops below this, then collective gravity
sets the velocity dispersion and k*h ! |ss|/� / r3/2, which is
independent of � and approaches unity only at very large
distance, rQ/rr � (�r/|ss|)

2/3. We restrict our attention to
disks that do not extend that far.

If there is a physical edge to the disk, rd < rQ, that can
reflect nodal waves while they are still long waves (i.e.,
k ! �k, cg ! �cg), they will return to the resonance, where
their angular momentum flux is reabsorbed by the planet
(Tanaka, Takeuchi, & Ward 2000; Goldreich & Sari 2003;
Ward 2003). In the absence of dissipation, the net torque
shuts off and the inclination no longer decays.2 This requires
a fairly sharp drop in density, that is, |d ln �/d ln r| 4 r|k| /
1/�r1/2, but may well be the fate of inward-propagating
waves if they encounter interior regions already depleted
by other forming planets. On the other hand, outward-
traveling waves can travel much farther, and if these waves
dissipate over the round-trip, equation (17) remains valid.
In a disk of low optical depth, the most likely source of dissi-
pation is nonlinear effects; that is, waves will break when
|k|�1 becomes comparable to the wave amplitude H (e.g.,
Shu 1984). From the wave-amplitude equation (eq. [14])
and the conservation-of-action equation (eq. [16]), we can
write |H| = (|F |/Gr)1/2/�� � rr sin Id (�r/�)(rr/r)

1/2, so that
the product |kH| ! sin Id [|ss|/ld(rr)�r](�rrr/�r)

2. At some
point, the disk must have a region where the surface density
ramps down faster than r�2 to avoid mass divergence. How-
ever, the more remote the region, the larger the density gra-
dient necessary for efficient reflection. If this is not attained,
the waves penetrate the region with |kH| / (�r)�2 increasing
faster than r2, so that the waves eventually become nonlin-
ear and dissipate; it is this case that is considered in the
remainder of the paper.

3. SECULAR RESONANCE SITES

Further progress requires locating the resonance, which is
the site where the disk’s nodal rate matches the planet’s rate:
s(r) = ss. Unlike mean motion resonances, the location of a
secular resonance is sensitive to non-Keplerian aspects of
the potentials. Thus, careful treatments of the precession
rates of both secondary and disk are required.

1 We wish to correct footnote 9 in that work. As in the case described
here, both exterior and interior resonances generate waves of negative
angular momentum density and thus damp es.

2 A reduced torque occurs for partial dissipation, in which case eq. (17)
would be replaced by an expression that depended on this aspect as well.
We treat the interesting case of long-wave reflection at a physical edge in
another work (Ward 2003).
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3.1. Precession of the Disk, s(r)

The potential of the perturber affects both the vertical
[�2 � @2(’p + ’s)/@z

2|z=0] and the orbital [�2 � r�1@(’p +
’s)/@r] frequencies of the disk:

�2 ¼ �2
K þ 1

H

@�00

@z
¼ �2

K þ GMs

2a3
b
ð0Þ
3=2 ; ð19Þ

�2 ¼ �2
K þ 1

r

@�00

@r
¼ �2

K þ GMs

2a3
ðbð0Þ3=2 � ��1b

ð1Þ
3=2Þ ; ð20Þ

where �K � (GMp/r
3)1/2 is the usual Keplerian frequency,

with Mp being the primary’s mass. Assuming s5�,
s = (�2 � �2)/(� + �) � (�2 � �2)/2�. The secondary
increases the vertical frequency slightly more than it does
the orbital frequency, and consequently the nodes regress at
the well-known rate

s ’ �1
4 ls�

2b
ð1Þ
3=2� : ð21Þ

What about the mass of the disk itself? Clearly, its self-
gravity can also affect both its vertical and azimuthal
frequencies. Replacing the mass of the secondary with the
mass of a disk annulus,Ms ! 2��r0 dr0 and a ! r0, the form
of equation (20) implies an additional contribution of

�G

Z
disk

�ðr0Þ
r02

ðb0ð0Þ3=2 � �0�1b
0ð1Þ
3=2Þdr

0 ð22Þ

to �2, where now b0
ðmÞ
3=2 � b

ðmÞ
3=2(r/r

0) and �0 � r/r0. The verti-
cal acceleration from the disk’s self-gravity is

�@’d

@z
¼ �G

Z
�ðr0Þr0 dr0

Z �

��

d�
Hðr0Þ cos ��HðrÞ

ðr02 þ r2 � 2rr0 cos �Þ3=2

¼ ��G

Z
�ðr0Þ
r02

dr0½bð1Þ3=2Hðr0Þ � b
ð0Þ
3=2HðrÞ� ð23Þ

(e.g., Shu 1984). Rewriting the bracketed quantity as

b
ð1Þ
3=2[H(r0) � �0�1H(r)] + (�0�1b

ð1Þ
3=2 � b

ð0Þ
3=2)H(r), the second

term leads to the same contribution to �2 as equation (22)
and therefore does not alter �2 � �2. In the first integral,
however, b

ð1Þ
3=2 is very strongly peaked at (�

0 = 1, r0 = r). This
is the term that leads to the first derivative in equation (4).
At very small x = (r0 � r)/r, any thickness h = h0r to the
disk cannot be ignored. We soften the Laplace coefficients
by adding h2 to the denominator of equation (10) and then
replace it with its asymptotic form, b

ðmÞ
3=2 ! 2r02/

�[(r0 � r)2 + h2] = 2/�(x2 + h02). Setting r0 = r elsewhere,
extending the integration to (�1, 1), and pulling slowly
varying terms out of the integral yields

2G�

Z 1

�1

HðrÞ �Hðr0Þ
ðr0 � rÞ2 þ h2

dr0

¼ 2�G�

h
HðrÞ � 2G�

Z 1

�1

Hðr0Þ
ðr0 � rÞ2 þ h2

dr0 : ð24Þ

The first term acting alone would contribute an additional
term of order ��G�/h� to the disk’s precession rate. This
would pertain if adjacent parts of the disk were either unper-
turbed, H(r0) = 0, or uncorrelated (e.g., Ward 1981). How-
ever, because nearby disk material executes very similar

motion in the coherent wave, the second integral is of com-
parable importance (A. Toomre 2002, private communica-
tion).3 It can be evaluated through residue theory4 as
�2�G�H(r + ih)/h. If h5 r, we can replace H(r + ih) with
its Taylor expansion, so that to first-order accuracy,

�2G�

Z 1

�1

Hðr0Þ �HðrÞ
ðr0 � rÞ2 þ h2

dr0 ¼ �2�iG�
dH

dr
: ð25Þ

The result becomes exact in the limit h ! 0 and simply
recovers the first term in the wave equation (eq. [4]). We
conclude that, aside from this term, the self-gravity of the
disk is negligible compared with the secondary in its effect
on its own precession rate, s(r).

3.2. Precession of the Secondary, ss

In order to ascertain the effect of the disk on the preces-
sion of the planet, we will employ a direct approach of deriv-
ing the reaction forces on the planet by integrating over the
perturbed disk. The gravitational potential due to the inter-
action of the secondary Ms with a disk mass element

m = �r dr dh is


’ ¼ �G
m= r� rsj j ; ð26Þ

where r = rn̂n + zk̂k, rs = an̂n + zsk̂k, |r � rs| ’ [r2 + a2 �
2ar cos (h � hs) + (z � zs)

2]1/2, and the indirect term has
been omitted because it contains no secular contribution
(e.g., Brouwer & Clemence 1961). The resulting forces on
the planet are

f
Fr; 
F�; 
Fzg ¼GMs�r dr d�

r� rsj j3
fr cos ð�� �sÞ � a;

r sin ð�� �sÞ; z� zsg : ð27Þ

Assuming z and zs are small, they are ignored in the
denominator, which can then be Fourier-expanded as

½r2 þ a2 � 2ar cos ð�� �sÞ��3=2

¼ 1

a3

�
b
ð0Þ
3=2

2
þ
X1
m¼1

b
ðmÞ
3=2 cosmð�� �sÞ

�
: ð28Þ

Integrations of 
Fr and 
F� over h (i.e., dFi �
R 2�

0 
Fi dh) are
easily done to find the forces due to an annulus of the disk,

dFr ¼
�GMs

a3
r� dr ðrbð1Þ3=2 � ab

ð0Þ
3=2Þ ; dF� ¼ 0 : ð29Þ

Consequently, there is no dependence of these forces on the
angular position of the planet, hs, to lowest order in z. The

3 A similar result was found by Ward & Hahn (1998) for apsidal waves,
wherein the effect of the perturbed disk potential on precession of a test
particle almost cancels that of the unperturbed disk potential.

4 Analytically extend H(z) to the complex plane and choose a semi-
circular integration path with its base on the real axis and the return
path on the +i side. The denominator can be factored as 1/
(z � r + ih)(z � r�ih) with two singularities, but only one (z = r + ih) is
inside the contour. Thus, Cauchy’s integral theorem,

H
f(z)/(z � a)dz =

2�if(a), leads to the desired result.
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vertical force

dFz ¼
GMs�r dr

a3

�
Z 2�

0

ðz� zsÞ
�
b
ð0Þ
3=2

2
þ
X1
m¼1

b
ðmÞ
3=2 cosmð�� �sÞ

�
d� ð30Þ

is more subtle, however, owing to the dependence of z on
h � hs.

The vertical motion of the planet is zs = Re (a sin Is
exp [i(hs � sst)]). Substituting z = Re (H exp [i(h � sst)])
into equation (30) and writing exp [i(h � sst)] =
exp [i(hs � sst)] exp [i(h � hs)] yields the azimuthally inte-
grated results,

dFz ¼ Re

�
�GMs�r dr

a3
ðHb

ð1Þ
3=2 � a sin Isb

ð0Þ
3=2Þe

ið�s�sstÞ
�

� dFH � dFs ; ð31Þ

where H is given by equation (13). The quantity dFs can be
written simply,

dFs ¼
�GMs�r dr

a2
b
ð0Þ
3=2 sin Is cosð�s � sstÞ : ð32Þ

To determine the effect on the orbit, we can use Gauss’s
form of Lagrange’s equations:

d _II ¼ � dW

a�s
sinð�s � sstÞ ; dss ¼

dW

a�s sin Is
cosð�s � sstÞ

ð33Þ

(e.g., Brouwer & Clemence 1961), where

dW ¼ �ðdFr=MsÞ sin Is cos ð�s � sstÞ þ ðdFz=MsÞ cos Is

� � �Gr� dr

a3
rb

ð1Þ
3=2 sin Is cos ð�s � sstÞ þ

dFH

Ms
ð34Þ

is the acceleration perpendicular to the orbit plane. One can
see that the first term in dW will not contribute to hd _IIi when
averaged over the planet’s orbit, but it does contribute an
amount

hdssi ¼ � �Gr� dr

2a4�s
rb

ð1Þ
3=2 ð35Þ

to the precession. Since the Laplace coefficient becomes
very large as the planet is approached, as O(2a2/
�[(r � a)2 + h2]), where h is the disk thickness, equation (35)
alone predicts a precession rate of order �G�/2h�s.

Next consider FH; the contributions it makes to _IIs and ss
are respectively

hd _IIsi ¼
�G�r dr

2a4�s
b
ð1Þ
3=2 Im ðHÞ ;

hdssi ¼
�G�r dr

2a4�s sin Is
b
ð1Þ
3=2 Re ðHÞ : ð36Þ

The imaginary part of H occurs mostly near resonance, as

the nodes of the disk material rotate with the waveform.
Integrating equation (13) radially over the disk, it becomes

Z
disk

HðrÞdr � � skZs

�
2�r

k0j j

�1=2

r

�
2

rk0

�1=2

�
Z 1

�1
d�

�
e�i�2ffiffiffi

�
p

Z �

�1
ei�

2

d�

�
: ð37Þ

To evaluate the double integral, we make the coordinate
transformations u = (� + �)/

ffiffiffi
2

p
and v = (� � �)/

ffiffiffi
2

p
,

yielding

Z 0

�1
dv

Z 1

�1
e�2iuv du ¼

Z 0

�1
�
ðvÞdv ¼ �

2
; ð38Þ

where 
(v) denotes the Dirac delta function. The factor of
1
2 comes from the fact that we only have half of 
(v) in
the range of integration. Combining equations (37) and
(38) with equations (11) and (36) and the definition
|rk0| = |r ds/dr|/ld� then recovers equation (17) for dIs/dt.

The purely imaginary value (due to Zs) for
equation (38) seems to imply no contribution to ss, leav-
ing equation (35) unopposed. But this is due to our
neglect of any variation in Zs and its removal from the
integral. Again, the rationale for this was that most of
the imaginary contribution occurs near the resonance.
This is not so for the real part; ignoring the lead self-
gravitating term in equation (4) for r5 rr yields

HðrÞ � iZs

k
¼ � @�01=@z

D

¼
ls�

2rb
ð1Þ
3=2�

4ðss � sÞ sin Is ¼ �r

�
s

ss � s

�
sin Is ; ð39Þ

where equation (21) is employed in the last step. This is
the so-called nonwave part of the solution. Substituting
into equation (36) and combining with equation (35)
yields

hdssi ¼ � �G�r dr

2a4�s
rb

ð1Þ
3=2

�
ss

ss � s

�
: ð40Þ

This expression no longer diverges as the planet is
approached, that is, hdssi ! �2ss(ld/ls)dr/a. Note that
this is positive, so that the near parts of the disk try to
advance the planet’s node. This is because the nonwave
solution describes disk annuli that are forced to align
with the planet; on the far side of the resonance, the sit-
uation is reversed. Equation (40) has a singularity at
s = ss, an unphysical result because this is the region
where the self-gravity organizes the motion and prevents
divergence. Nevertheless, we can use this expression to
crudely estimate the contribution to ss by integrating
over the disk and taking the principal value of the
integral:

Dss ¼
��G

2a4�s
PV

Z 1

a

�r2b
ð1Þ
3=2

�
ss

ss � s

�
dr : ð41Þ

Using equation (21), again adopting the asymptotic
form for b

ð1Þ
3=2 � 2/�(x2 + h02), and evaluating all other
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quantities at r = a, equation (41) becomes

Dss ¼
��G�

2a�s
PV

Z 1

a

b
ð1Þ
3=2 dr

1� s=ss

¼ � G�

a�s
PV

Z 1

0

dx

x2 þ h02 � ls�s=2� ssj j
: ð42Þ

The normalized disk thickness h0 � h/r � vdisp/r�, where
vdisp represents the particles’ dispersion velocity.
Assuming, for instance, that this is on the order of the
particles’ escape velocity gives h0 � 10�3[R/(10 km)][r/
(10 AU)]1/2[Mp/(1 M	)]

�1/2 for a particle radius R. If
|ss| > ls�s/2�h0

2 � scrit, there is no pole in the
denominator, and

Dss ¼
��G�

2h�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� scrit= ssj j

p : ð43Þ

The disk itself can provide the necessary precession for
equation (43) to apply only if �G�/h� 4 scrit, which
implies a massive disk compared with the secondary,
that is, ��r2/Ms 4 1.6 � 102[R/(10 km)]�1[r/(10 AU)]�1/2

[Mp/(1 M	)]
1/2. However, if |ss| < scrit, a resonance exists

and the principal value of the integral vanishes. A more
accurate evaluation of equation (42) yields a small non-
zero value, but the overall effect of the disk is small.

3.3. Two-Planet Problem

Thus, for small disks the precession of a secondary
depends mostly on other aspects of its specific environment.
We take as an important application two mutually preces-
sing planets, M1 and M2, with relative inclination Is. In
isolation, they precess at the rate

ss ¼ �1
4 l1�b

ð1Þ
3=2ð�Þ�2 � 1

4 l2�
2b

ð1Þ
3=2ð�Þ�1 ð44Þ

about their combined angular momentum vector with anti-
aligned nodes (e.g., Brouwer & Clemence 1964), where
a1 < a2 are the semimajor axes, li = Mi/Mp, the �i are their
mean motions, and � � a1/a2. Their individual inclinations
to the invariable plane must satisfy M1a

2
1�1 sin I1 =

M2a
2
2�2 sin I2, so that for small inclinations

sin Ii �
lj

ffiffiffiffi
aj

p
sin Is

l1
ffiffiffiffiffi
a1

p þ l2
ffiffiffiffiffi
a2

p ; ð45Þ

where i 6¼ j. Now add a disk whose unperturbed orientation
is in the invariable plane. Because there are two perturbers,
equations (11) and (22) must be generalized to include both,
that is,

s ’ �1
4 ½l1�

2
1b

ð1Þ
3=2ð�1Þ þ l2�

2
2b

ð1Þ
3=2ð�2Þ�� ; ð46Þ

Zs ¼
isk
4

l1l2
ld

� ffiffiffiffiffi
a1

p
�2
2b

ð1Þ
3=2ð�2Þ �

ffiffiffiffiffi
a2

p
�2
1b

ð1Þ
3=2ð�1Þ

l1
ffiffiffiffiffi
a1

p þ l2
ffiffiffiffiffi
a2

p
�
sin Is ;

ð47Þ

where �i � r/ai. These quantities can also be written in
terms of �i � 1/�i = ai/r by noting from their definition

that �3/2b
ð1Þ
3=2(�) = �3/2b

ð1Þ
3=2(�). Well inside a1, the Laplace

coefficients can be approximated as b
ð1Þ
3=2(�i) � 3�i and

s ! �3
4r

3�(l1/a
3
1 + l2/a

3
2) / r3/2, while far outside a2,

b
ð1Þ
3=2(�i) � 3�i and s ! �3

4r
�2�(l1a

2
1 + l2a

2
2) / r�7/2. In

Figure 2, the ratio

s

ss
¼

�
1=2
1 ½bð1Þ3=2ð�1Þ þ l̂l�2b

ð1Þ
3=2ð��1Þ�

�2ð�1=2 þ l̂lÞbð1Þ3=2ð�Þ
ð48Þ

is plotted for two example problems described in x 4, where
l̂l ¼ l2=l1. At each planet there are local maxima of order
|s| � li�/2�h

2 4 |ss|, so that the curves are strongly peaked
at these positions. Resonance occurs when the curve passes
through unity; thus, there should be a resonance both inte-
rior and exterior to the pair.5

Concentrating on the external resonance for specificity,
and adopting a situation in which Laplace coefficients of �
can be approximated by a power of r as above (i.e., �5 1),
so that

ss � �3
4�2�

3=2ðl1�1=2 þ l2Þ ;

s � �½34 l1�
2ða2=rÞ2 þ 1

4 l2ða2=rÞb
ð1Þ
3=2ð�2Þ�� ; ð49Þ

the resonance position is found from

l1�
2

�
1�

�
a2
r

�7=2�
¼ l2

�
1

3

�
a2
r

�5=2

b
ð1Þ
3=2ð�2Þ � �3=2

�
:

ð50Þ

4. DISCUSSION

4.1. Applications

Consider first the case where l1�
1/2 4 l2, for which

equation (46) nearly reduces to equation (11) and the �3/2

5 One can show, however, that there is no resonance between the two
planets because the ratio s/ss never drops below unity for a1 < r < a2.

Fig. 2.—Relative precession rate s/ss for the two examples of the two-
planet problem described in x 4. The mutual precession of the planets, ss, is
given by eq. (44); the precession of disk particles, s, is found from eq. (46)
and diverges as each planet is approached at 5 and 15 AU. Secular
resonances occur where the curves cross unity, i.e., s/ss = 1; there is one
interior and one exterior to the pair.
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term in the brackets on the right-hand side of equation (50)
can be ignored. Most of the mutual inclination is due to the
tilt of the smaller outer object, and the situation resembles
that assumed in x 2. Denoting the resonance position as
r = a2(1 + x), where x5 1, and approximating b

ð1Þ
3=2 �

2/�x2 gives

x �
�

4

21�

l2
�2l1

�1=3

¼ 0:39

�
l2

�2l1

�1=3

ð51Þ

for the resonance location. The damping rate becomes

1

sin Is

dIs
dt

� � �

8
ldl2�

3
2½b

ð1Þ
3=2ð�2Þ�2

���� �

r ds=dr

�����2 ; ð52Þ

which is identical to equation (17). If the gradient of s(r) is
due mostly to the l2 term in equation (49), |�/r ds/dr| �
�x3/l2 and equation (52) simplifies to

1

sin Is

dIs
dt

� � ld�2

2x
� �1:3ld�2

�
�l1
l2

�1=3

: ð53Þ

This rate is only weakly dependent on the planetary mass
ratio. As an example, set a1 = 5 AU, a2 = 15 AU, and
l1 = 10l2, for which x = 0.26. The resonance lies at �19
AU and the characteristic damping timescale is
�damp � 7l�1

d yr. A numerical evaluation of the Laplace
coefficients in equation (48) puts the resonance closer to
21 AU (Fig. 2).

Consider next the case where l1 = l2 = ls, for which
there is a nonnegligible inclination for both objects. To find
the variation in their mutual inclination, Is, the change in
the z-component of the total angular momentum is used,
that is, _LL1 + _LL2 = |F |. This is because no matter where the
disk torque is applied, the mutual torque between the plan-
ets will redistribute the angular momentum so as to satisfy
equation (45). The result can be written

1

sin Is

dIs
dt

¼ � �

8
ld

�
l1l2

l1�
1=4 þ l2�

�1=4

�

� ½�1=2
1 �2b

ð1Þ
3=2ð�2Þ � �

1=2
2 �1b

ð1Þ
3=2ð�1Þ�2

�
���� �

r ds=dr

����
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
: ð54Þ

Because the outer planet has significant mass, we expect
the distance to the external resonance to be somewhat com-
parable to the distance between the planets, so that
b
ð1Þ
3=2(�2) � 3�2, s � �3

4ls(1 + �2)(a2/r)
7/2�2, and

1

sin Is

dIs
dt

� � 9

8
��1=2f ð�Þldls

�
a2
r

�5���� �

r ds=dr

�����2 ;

f ð�Þ � ð1� �3=2Þ2=ð1þ �1=2Þ : ð55Þ

The position of the resonance is a2/r = �3/7[(1 + �1/2)/
(1 + �2)]2/7 � �3/7~ff (�), while r ds/dr � �7s/2. Substitut-
ing for s and r gives

1

sin Is

dIs
dt

� � 3

7
��25=14gð�Þld�2 ;

gð�Þ � f ~ff 3

1þ �2
¼ ð1� �3=2Þ2

ð1þ �2Þ13=7ð1þ �1=2Þ1=7
: ð56Þ

This implies a characteristic damping time of
�damp � 0.12g�1l�1

d (a2/a1)
25/14P2, where P2 is the orbital

period of the outer planet. Note that this does not depend
on the planets’ masses, because in equation (55) ls appears
both in the nominator and in the denominator through ds/
dr. It is also interesting that both planets damp at the same
rate, even though their individual torques and angular
momenta are unequal. Again, this is due to communication
between the planetary pair via their mutual torque (e.g.,
Agnor & Ward 2002). Using the same semimajor axes
as before, g(13) = 0.51, (sin Is)

�1dIs/dt � 0.097ld�2, and

�damp � 140l�1
d yr. For this example, the external resonance

lies at a distance rr � (a2/a1)
3/7a2/~ff = 1.6a2 = 24 AU, in

pretty good agreement with the�25 AU value of Figure 2.

4.2. Comparison with External VRs

Finally, as mentioned at the outset, there is also an array
of other m > 1 VRs that simultaneously conspire to excite
the secondary’s inclination. The inclination excitation rate
due to each mth-order external resonance is given by
BGT846 and can be written as

1

sin Is

dIs
dt

� 3m3

8�
lsld ½K1ð4=3Þ�2�s ; ð57Þ

where K1 is a modified Bessel function. Comparison with
equation (17) reveals that equation (57) is smaller for
m d O(3(�/|r ds/dr|)1/3) � 3l

�1=3
s . The Jacobi constant is

often invoked to argue that an accreting planetary embryo
will tend to clear out a gap in a particle disk to a minimum
size of wgap e 2

ffiffiffi
3

p
RH, where RH = r(ls/3)

1/3 is its Hill
radius (e.g., Lissauer & Stewart 1993). This places an
upper limit on resonance order of mmax � 4a/3wgap d

0.5l
�1=3
s . The inordinate strength of the secular resonance

can be traced to the long wavelength of apsidal waves,
which allows their open spiral structure to couple well to the
potential of the perturber over a large swath of the disk.
Summing equation (57) over the m d 4as/3w resonances
that lie beyond the gap width w yields the cumulative
inclination excitation rate,

1

sin Is

dIs
dt

� 0:012

�
as
w

�4

lsld�s : ð58Þ

This implies a maximum excitation rate of (sin Is)
�1dIs/

dt � 3.6 � 10�4ldl
�1=3
s �s. If this rate is less than the rate of

I-damping due to nodal wave generation (say, eq. [53] or
[56]), secular resonant interaction with the disk will still sta-
bilize the protoplanet’s inclination and prevent it from
growing. In the first case considered, both equation (53) and
the maximum excitation rate have the same dependence on
ld/l

1=3
2 , so that the ratio �damp/�ex � 0.03[M1/(1 M
)]�1/3.

A more massive inner planet shortens the damping time-
scale by speeding up the precession rate, thereby causing the
secular resonance to lie closer to the outer planet. For the
second example above, �damp/� ex � 0.3[Ms/(1 M
)]�1/3,
and stability would be ensured for Ms e 2 � 10�2 M
,
although lower masses could also be stable if they are able
to open and maintain gaps larger than the minimum by
shepherding action; this would depend on the specifics of

6 We assume the planets reside in gaps and so omit the portion of the
BGT84 expression that is due to the satellite’s recoil from the disk edge.
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the particle disk as well. Confining planetary embryos to
low-inclination orbits may have important ramifications for
their subsequent accretion rates.

5. CONCLUSION

An inclined precessing secondary will drive nodal waves
in an adjacent disk at the site or sites of secular resonance.
These are one-armed spiral bending waves that carry nega-
tive angular momentum; the reaction torque on the sec-
ondary damps its inclination. The wave pattern regresses at
the rate of the secondary’s node, and the slow pattern speed
results in very little energy exchange with the disk and, con-
sequently, only a minor effect on the semimajor axis of the
secondary. The (m = 1) secular resonance is formally an
inner vertical resonance associated with the slow pattern
speed (l = m � 1) of equation (2). The m > 1 versions of
this resonance also damp I, but they fall (nearly) at the sec-
ondary’s semimajor axis (Ward & Hahn 1994). Thus, they

are shut off if the object opens a gap in the disk. However,
the secular resonance is sensitive to non-Keplerian compo-
nents of the gravitational potential and can be displaced sig-
nificantly from the secondary to lie in the disk outside a gap.
The wavelengths of nodal waves are very long, and their
open spiral structure couples efficiently to the forcing poten-
tial, resulting in an inordinately strong torque. Indeed, in
some circumstances this single resonance can dominate the
more numerous external vertical resonances and prevent
them from exciting the secondary’s inclination.
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