PHYSICS 211.1, Assignment 0

Assigned: January 4, 2005; Due: January 18, 2005.

1) Two astronauts, joined together by a 7.00 metre cord, are floating freely and at rest inside the International Space Station. The masses of the astronauts are 60.0 kg and 80.0 kg . If the cord is initially taut and the astronauts pull themselves in together until they meet, how much does each astronaut move relative to the interior of the space station?
2) A railroad flatcar is loaded with crates having a coefficient of static friction of 0.250 with the floor. If the train is moving with a speed of $15.0 \mathrm{~m} / \mathrm{s}(54.0 \mathrm{~km} / \mathrm{hr})$, in how short a distance can the train be stopped at constant (negative) acceleration without causing the crates to slide?
3) problem 11P, Chapter 12.
4) A "yo-yo" is pulled by its string (held horizontally) with a force $F=0.10 \mathrm{~N}$ as shown in Figure 1, so that the yo-yo rolls along the horizontal floor without slipping. If the yo-yo has mass $m=0.10 \mathrm{~kg}$, outer radius $R=0.030 \mathrm{~m}$, inner radius $r=0.010 \mathrm{~m}$, and moment of inertia $I=\frac{9}{20} m R^{2}$, find the linear acceleration, a, of the yo-yo. In particular, does the yo-yo roll to the right (so that the string winds up) or to the left (so that the string unwinds)? (Hint: In your free-body diagram, don't forget the static friction force preventing the yo-yo from slipping along the floor.)
5) Consider a circular ring of material, total mass M and radius R as shown in Figure 2. If a mass m lies along the axis of the ring at a distance x from the centre of the ring, with what gravitational force does the ring attract m ? Express your answer in terms of G, M, m, R, and x. [Hint: Break the ring up into small bits of mass $d M$ as indicated in the figure, and note that each bit is the same distance away from m. Next, note that by symmetry, only the x-component of the gravitational force from each bit will contribute to the overall gravitational force, since the perpendicular components all cancel. Then add up (integrate) the x-components of the gravitational forces from all the bits, using the fact that $\left.\int_{M} d M=M.\right]$

Figure 1.-Problem 4.

Figure 2.-Problem 5.

