Lecture Notes for PHY 405
 Classical Mechanics

From Thorton \& Marion's Classical Mechanics
Prepared by
Dr. Joseph M. Hahn
Saint Mary's University
Department of Astronomy \& Physics
November 7, 2003

Chapter 9: Dynamics of systems of particles

To date we have focused on the motion of a single particle (ex: the motion of a block on an inclined plane, the plane pendulum, etc.).

We also examined the 2-body central force problem by recasting it as 1-body problem.

Now we will consider N-body systems for the remainder of this course.
Our first task is to derive the relevant conservation theorems for systems of N particles (as we did earlier for $\mathrm{N}=1$ systems).

Note that these results will be true for a swarm of N interacting particles, as well as for a single extended body that can be conceptually broken up into N smaller units.

Strong \& Weak forms of Newton III

First consider the force $\mathbf{f}_{\alpha \beta}$ that particle β exerts on particle α :
Newton's III ${ }^{r d}$ Law is

$$
\mathbf{f}_{\alpha \beta}=-\mathbf{f}_{\beta \alpha}
$$

e.g., the forces exerted by particles α and β
are equal in magnitude and opposite in direction.
This is sometimes referred to as the weak form of Newton III.

The strong form of Newton III reads:
the forces $\mathbf{f}_{\alpha \beta}$ are also parallel to the line connecting α and β.

The additional assumption is generally true in mechanical systems (ie, the physics of solid bodies).
However it is not true for all forces, such as the magnetic force $\mathbf{F}=q \mathbf{v} \times \mathbf{B}$. Such forces will not be considered here.

We will use the weak and strong forms of Newton III below as we derive various conservation theorems for N -body systems.

Center of Mass

The center of mass (CoM) \mathbf{R} for a system of N discrete particles is

$$
\begin{aligned}
\mathbf{R} & =\frac{1}{M} \sum_{\alpha=1}^{N} m_{\alpha} \mathbf{r}_{\alpha} \\
\text { where } \quad M & =\sum_{\alpha=1}^{N} m_{\alpha}=\text { total mass }
\end{aligned}
$$

To compute \mathbf{R} for a continuous body,

$$
d \mathbf{R}=\mathbf{r} \frac{d m}{M}=\text { contribution by small mass } d m \text { at } \mathbf{r}
$$

so $\quad \mathbf{R}=\int d \mathbf{R}=\frac{1}{M} \int \mathbf{r} d m$

Fig. 9-3.
Example 9.1:
Calculate \mathbf{R} for a hemisphere of mass M, radius a, and uniform density $\rho=3 M / 2 \pi a^{3}$:
first place the origin the center of the hemisphere's base and set

$$
\begin{aligned}
\mathbf{R} & =R_{x} \hat{\mathbf{x}}+R_{y} \hat{\mathbf{y}}+R_{z} \hat{\mathbf{z}} \\
\text { so } \quad R_{x} & =\frac{1}{M} \int x d m \quad \text { where } d m=\rho d x d y d x \\
& =\frac{1}{M} \int_{-a}^{a} x d x \int d y \int d z \\
& =0
\end{aligned}
$$

similarly $R_{y}=0$
however $\quad R_{z}=\frac{1}{M} \int_{0}^{a} z d m$ where $d m=\rho \pi\left(a^{2}-z^{2}\right) d z$

$$
\begin{aligned}
& =\frac{\rho \pi}{M} \int_{0}^{a}\left(a^{2} z-z^{3}\right) d z \\
& =\frac{3}{2 a^{3}}\left(\frac{1}{2}-\frac{1}{4}\right) a^{4}=\frac{3}{8} a \\
& \Rightarrow \mathbf{R}=\frac{3}{8} a \hat{\mathbf{z}}
\end{aligned}
$$

Now add the lower hemisphere to form a complete sphere. What is \mathbf{R} ?

Now derive a number of conservation theorems for systems of N particles: conservation of \mathbf{P}, \mathbf{L}, and E.

N -body forces

Let $\mathbf{f}_{\alpha \beta}=$ the force on particle α due to particle β
so $\quad \mathbf{f}_{\alpha}=\sum_{\beta=1}^{N} \mathbf{f}_{\alpha \beta}=$ the total force on α due to all other $\operatorname{p's} \beta$.
\equiv the net internal force on α
note that $\mathbf{f}_{\alpha \alpha}=0$ and $\mathbf{f}_{\alpha \beta}=-\mathbf{f}_{\beta \alpha}$ by NIII
also let $\mathbf{F}_{\alpha}^{e}=$ the external force on α-gravity, for example the total force on α is $=\mathbf{f}_{\alpha}+\mathbf{F}_{\alpha}^{e}$

Now recall that Newton's II $^{\text {nd }}$ Law, $\dot{\mathbf{p}}=\mathbf{F}$, ie,

$$
\begin{aligned}
\dot{\mathbf{p}_{\alpha}} & =m_{\alpha} \ddot{\mathbf{r}}_{\alpha}=\mathbf{f}_{\alpha}+\mathbf{F}_{\alpha}^{e} \\
\text { so } \frac{d^{2}}{d t^{2}} m_{\alpha} \mathbf{r}_{\alpha} & =\sum_{\beta=1}^{N} \mathbf{f}_{\alpha \beta}+\mathbf{F}_{\alpha}^{e}
\end{aligned}
$$

Now sum over all particles $\alpha: \frac{d^{2}}{d t^{2}} \sum_{\alpha=1}^{N} m_{\alpha} \mathbf{r}_{\alpha}=\sum_{\alpha=1}^{N} \sum_{\beta=1}^{N} \mathbf{f}_{\alpha \beta}+\sum_{\alpha=1}^{N} \mathbf{F}_{\alpha}^{e}$
and note that the LHS $=M \ddot{\mathbf{R}}$

Now consider the first sum on the right, which is the system's total internal force \mathbf{F}^{i} :

$$
\begin{aligned}
\mathbf{F}^{i} & \equiv \sum_{\alpha} \sum_{\beta} \mathbf{f}_{\alpha \beta}=-\sum_{\alpha} \sum_{\beta} \mathbf{f}_{\beta \alpha} \\
& =-\sum_{\alpha} \sum_{\beta} \mathbf{f}_{\alpha \beta} \quad \text { upon swapping the dummy indices } \alpha \leftrightarrow \beta \\
& =-\mathbf{F}^{i} \\
\Rightarrow \mathbf{F}^{i} & =0 \text { the internal forces sum to zero (due to weak Newton III) }
\end{aligned}
$$

thus $M \ddot{\mathbf{R}}=\mathbf{F}^{e}$
where $\quad \mathbf{F}^{e}=\sum_{\alpha=1}^{N} \mathbf{F}_{\alpha}^{e}$ sum of all external forces on all particles
This is result I: The system's CoM \mathbf{R} evolves as if it were a single body of mass M under the influence of the total external force \mathbf{F}^{e}.

Conservation of Linear Momentum P

$$
\begin{aligned}
& \text { total momentum } \quad \mathbf{P}=\sum_{\alpha} m_{\alpha} \dot{\mathbf{r}}_{\alpha} \\
& =\frac{d}{d t} \sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}=M \dot{\mathbf{R}} \\
& \text { thus } \dot{\mathbf{P}}=M \ddot{\mathbf{R}}=\mathbf{F}^{e}
\end{aligned}
$$

II. the system's total linear momentum \mathbf{P} is the same as if the system were a single body of mass M located at the $\operatorname{CoM} \mathbf{R}$.
III. \mathbf{P} is conserved when $\mathbf{F}^{e}=0$.

Problem 9-6

Two particles of mass m start at the origin. Particle 1 feels zero force, while particle 2 feels $\mathbf{F}_{2}=F \hat{\mathbf{x}}$.

What are the particle's motions \& the CoM motion?
We anticipate $x_{1}(t)=0$ and $x_{2}(t)=F t^{2} / 2 m$ so
$x_{C o M}(t)=x_{2} / 2=F t^{2} / 4 m$

Confirm:

$$
\begin{aligned}
M \ddot{\mathbf{R}}_{C o M} & =\mathbf{F}=F \hat{\mathbf{x}} \\
\text { so } \quad \ddot{x}_{C o M} & =\frac{F}{2 m} \\
\text { and } \quad \dot{x}_{C o M} & =\frac{F t}{2 m} \\
\text { and } \quad x_{C o M} & =\frac{F t^{2}}{4 m}=\frac{1}{2} x_{2} \quad \text { as expected }
\end{aligned}
$$

Angular Momentum L

Write each particle's position $\mathbf{r}_{\alpha}=\mathbf{R}+\mathbf{r}_{\alpha}^{\prime}$ so that $\mathbf{r}_{\alpha}^{\prime}=$ distance of particle α from the CoM:

Fig. 9-5.
since $\mathbf{L}_{\alpha}=\mathbf{r}_{\alpha} \times \mathbf{p}_{\alpha}=$ particle α 'a angular momentum,
total ang' mom' is $\mathbf{L}=\sum_{\alpha} \mathbf{r}_{\alpha} \times m_{\alpha} \dot{\mathbf{r}}_{\alpha}$

$$
\begin{aligned}
& =\sum_{\alpha} m_{\alpha}\left(\mathbf{R}+\mathbf{r}_{\alpha}^{\prime}\right) \times\left(\dot{\mathbf{R}}+\dot{\mathbf{r}}_{\alpha}^{\prime}\right) \\
& =\sum_{\alpha} m_{\alpha}\left(\mathbf{R} \times \dot{\mathbf{R}}+\mathbf{R} \times \dot{\mathbf{r}}_{\alpha}^{\prime}+\mathbf{r}_{\alpha}^{\prime} \times \dot{\mathbf{R}}+\mathbf{r}_{\alpha}^{\prime} \times \dot{\mathbf{r}}_{\alpha}^{\prime}\right)
\end{aligned}
$$

Now show that the middle terms (MTs) sum to zero:

$$
\mathrm{MTs}=\mathbf{R} \times \frac{d}{d t}\left(\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}^{\prime}\right)+\left(\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}^{\prime}\right) \times \dot{\mathbf{R}}
$$

but

$$
\begin{aligned}
\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}^{\prime} & =\sum_{\alpha} m_{\alpha}\left(\mathbf{r}_{\alpha}-\mathbf{R}\right)=M \mathbf{R}-M \mathbf{R}=0 \\
\Rightarrow \mathrm{MTs} & =0 \\
\text { and } \mathbf{L} & =\mathbf{R} \times \mathbf{P}+\sum_{\alpha} \mathbf{r}_{\alpha}^{\prime} \times \mathbf{p}_{\alpha}^{\prime} \quad \text { where } \mathbf{p}_{\alpha}^{\prime}=m_{\alpha} \dot{\mathbf{r}}_{\alpha}^{\prime}
\end{aligned}
$$

$I V$. The system's total angular momentum $=$ angular momentum of the CoM about the origin $(\mathbf{R} \times \mathbf{P})$ plus the angular momentum of the system about the $\operatorname{CoM}\left(\sum_{\alpha} \mathbf{r}_{\alpha}^{\prime} \times \mathbf{p}_{\alpha}^{\prime}\right)$.

L conservation

Particle α 's angular momentum $\mathbf{L}_{\alpha}=\mathbf{r}_{\alpha} \times \mathbf{p}_{\alpha}$, so its time rate-of-change is

$$
\begin{aligned}
\dot{\mathbf{L}}_{\alpha} & =m_{\alpha} \dot{\mathbf{r}}_{\alpha} \times \dot{\mathbf{r}}_{\alpha}+m_{\alpha} \mathbf{r}_{\alpha} \times \ddot{\mathbf{r}}_{\alpha} \\
& =\mathbf{r}_{\alpha} \times \dot{\mathbf{p}}_{\alpha} \quad \text { where } \quad \dot{\mathbf{p}}_{\alpha}=\sum_{\beta=1}^{N} \mathbf{f}_{\alpha \beta}+\mathbf{F}_{\alpha}^{e} \\
& =\mathbf{r}_{\alpha} \times\left(\sum_{\beta=1}^{N} \mathbf{f}_{\alpha \beta}+\mathbf{F}_{\alpha}^{e}\right)
\end{aligned}
$$

The total rate of-change of the system's angular momentum is then

$$
\dot{\mathbf{L}}=\sum_{\alpha} \dot{\mathbf{L}}_{\alpha}=\sum_{\alpha} \mathbf{r}_{\alpha} \times\left(\sum_{\beta} \mathbf{f}_{\alpha \beta}+\mathbf{F}_{\alpha}^{e}\right)
$$

Now show that the first term (FT) on the right is zero:

$$
\begin{aligned}
F T & =\sum_{\alpha=1}^{N} \sum_{\substack{\beta=1 \\
\beta \neq \alpha}}^{N} \mathbf{r}_{\alpha} \times \mathbf{f}_{\alpha \beta} \\
& =\sum_{\alpha} \sum_{\beta \neq \alpha} \mathbf{N}_{\alpha \beta}
\end{aligned}
$$

where $N_{\alpha \beta}=\mathbf{r}_{\alpha} \times \mathbf{f}_{\alpha \beta}=$ torque on α due to β
now note that

$$
\sum_{\alpha=1}^{N} \sum_{\substack{\beta=1 \\ \beta \neq \alpha}}^{N} \mathbf{N}_{\alpha \beta}=\sum_{\alpha=1}^{N} \sum_{\beta=\alpha+1}^{N}\left(\mathbf{N}_{\alpha \beta}+\mathbf{N}_{\beta \alpha}\right)=\sum_{\alpha<\beta}\left(\mathbf{N}_{\alpha \beta}+\mathbf{N}_{\beta \alpha}\right)
$$

Confirm the above for an $N=3$ system:

$$
\begin{aligned}
& L H S=N_{12}+N_{13}+N_{21}+N_{23}+N_{31}+N_{32} \\
& \text { RHS }=\left(N_{12}+N_{21}\right)+\left(N_{13}+N_{31}\right)+\left(N_{23}+N_{32}\right)=L H S
\end{aligned}
$$

To formally prove that the above is

$$
\sum_{\beta \neq \alpha} N_{\alpha \beta}=\sum_{\alpha<\beta}\left(\mathbf{N}_{\alpha \beta}+\mathbf{N}_{\beta \alpha}\right),
$$

note that the LHS and RHS are the same sums over the non-diagonal matrix whose elements are $N_{\alpha \beta}$. Then

$$
\begin{aligned}
F T & =\sum_{\alpha<\beta}\left(\mathbf{N}_{\alpha \beta}+\mathbf{N}_{\beta \alpha}\right) \\
& =\sum_{\alpha<\beta}\left(\mathbf{r}_{\alpha} \times \mathbf{f}_{\alpha \beta}+\mathbf{r}_{\beta} \times \mathbf{f}_{\beta \alpha}\right) \\
& =\sum_{\alpha<\beta}\left(\mathbf{r}_{\alpha}-\mathbf{r}_{\beta}\right) \times \mathbf{f}_{\alpha \beta} \quad \text { since } \mathbf{f}_{\alpha \beta}=-\mathbf{f}_{\beta \alpha} \\
& =\sum_{\alpha<\beta} \mathbf{r}_{\alpha \beta} \times \mathbf{f}_{\alpha \beta}
\end{aligned}
$$

where $\mathbf{r}_{\alpha \beta} \equiv \mathbf{r}_{\alpha}-\mathbf{r}_{\beta}=$ points from β to α.
Now invoke the strong form of Newton III:
that $\mathbf{f}_{\alpha \beta}$ points along $\mathbf{r}_{\alpha \beta} \Rightarrow F T=0$.
This indicates that the total internal torque, $\sum_{\alpha} \sum_{\beta \neq \alpha} \mathbf{N}_{\alpha \beta}=0$, ie, the internal torques do not alter the system's \mathbf{L}.

The total rate-of-change of the system's angular momentum is simply the sum of all the external torques $\mathbf{N}_{\alpha}^{e}=\mathbf{r}_{\alpha} \times \mathbf{F}_{\alpha}^{e}$ that are due to external forces:

$$
\dot{\mathbf{L}}=\sum_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{F}_{\alpha}^{e}=\sum_{\alpha} \mathbf{N}_{\alpha}^{e} \equiv \mathbf{N}^{e}
$$

V. if the torque about some given axis $\hat{\mathbf{x}}$ is zero, ie. $\mathbf{N}^{e} \cdot \hat{\mathbf{x}}=0$, then $\mathbf{L} \cdot \hat{\mathbf{x}}=$ constant.
VI. The total internal torques sum to zero when the internal forces are central, ie, $\mathbf{f}_{\alpha \beta}=-\mathbf{f}_{\beta \alpha}$. In this case only external torques can alter the system's angular momentum.

A simple example

Let two masses m, which are attached to the unextended ends of a spring having a natural length b, rest on a frictionless plane. At time $t=0$, give one mass a sudden velocity kick \mathbf{V} perpendicular to the spring while giving the other mass a velocity kick $-2 \mathbf{V}$.

Where is the CoM?

What is the motion of the CoM?
the total momentum is $\quad \mathbf{P}=(-m V+2 m V) \hat{\mathbf{x}}=m V \hat{\mathbf{x}}=M \dot{\mathbf{R}}=2 m \dot{\mathbf{R}}$

$$
\begin{aligned}
& =\text { constant } \\
\Rightarrow \dot{\mathbf{R}} & =\frac{1}{2} V \hat{\mathbf{x}}
\end{aligned}
$$

and $\quad \mathbf{R}(t)=\frac{1}{2} V t \hat{\mathbf{x}}$

What is the system's total \mathbf{L} ?

$$
\begin{aligned}
\mathbf{L} & =m_{1} \mathbf{r}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{1}}+m_{2} \mathbf{r}_{\mathbf{2}} \times \mathbf{v}_{\mathbf{2}} \\
& =m \frac{1}{2} b \hat{\mathbf{y}} \times(-V \hat{\mathbf{x}})-m \frac{1}{2} b \hat{\mathbf{y}} \times(2 V \hat{\mathbf{x}}) \\
& =\frac{1}{2} m b V \hat{\mathbf{z}}+m b V \hat{\mathbf{z}} \\
& =\frac{3}{2} m b V \hat{\mathbf{z}}
\end{aligned}
$$

The total energy E at time $t=0$ is

$$
\begin{aligned}
E & =T+U=T \\
& =\frac{1}{2} m V^{2}+\frac{1}{2} m(2 V)^{2}=\frac{5}{2} m V^{2} \quad \text { which is conserved }
\end{aligned}
$$

Energy conservation

First look at the system's kinetic energy T :

$$
T=\sum_{\alpha} \frac{1}{2} m_{\alpha} \dot{\mathbf{r}}_{\alpha}^{2}
$$

And write the particles positions \mathbf{r}_{α} and velocities $\dot{\mathbf{r}}_{\alpha}$ as:

$$
\begin{aligned}
& \mathbf{r}_{\alpha} \\
\text { and } & =\mathbf{R}+\mathbf{r}_{\alpha}^{\prime} \\
\dot{\mathbf{r}}_{\alpha} & =\dot{\mathbf{R}}+\dot{\mathbf{r}}_{\alpha}^{\prime}
\end{aligned}
$$

where $\mathbf{r}_{\alpha}^{\prime}$ and $\dot{\mathbf{r}}_{\alpha}^{\prime}$ are α^{\prime} a position and velocity relative to the CoM.

$$
\text { thus } T=\sum_{\alpha} \frac{1}{2} m_{\alpha}\left(\dot{\mathbf{R}}^{2}+2 \dot{\mathbf{R}} \cdot \dot{\mathbf{r}}_{\alpha}^{\prime}+\dot{\mathbf{r}}_{\alpha}^{2}\right)
$$

note the middle term $\quad=\dot{\mathbf{R}} \cdot \frac{d}{d t} \sum_{\alpha} m_{\alpha} \mathbf{r}^{\prime}{ }_{\alpha}=0$

$$
\text { so } \quad T=\frac{1}{2} M \dot{\mathbf{R}}^{2}+\sum_{\alpha} \frac{1}{2} m_{\alpha} \dot{\mathbf{r}}_{\alpha}^{2}
$$

VII: the system's total KE is the sum of the KE due to the motion of the CoM + the KE due to internal motions.

Now the system's total potential energy U :
Section 9.5 shows that the total potential energy U is the sum of the potential due to the external forces plus the potential due to the particles' interactions:

$$
U=\sum_{\alpha=1}^{N} U_{\alpha}^{e}+\sum_{\alpha=1}^{N} \sum_{\beta=\alpha+1}^{N} U_{\alpha \beta}^{i}
$$

Note that the right sum is not over all particles $\alpha \& \beta$ (which would overcounting the internal potential energy!).

As usual, this is true for a conservative system, which means that these forces can be written in terms of potential energies that depend only on the coordinates \mathbf{r}_{α}, and not on velocities $\dot{\mathbf{r}}_{\alpha}$ or time t.

The total force \mathbf{F}_{γ} on particle γ is then

$$
\mathbf{F}_{\gamma}=-\nabla_{\gamma} U=-\nabla_{\gamma}\left(\sum_{\alpha=1}^{N} U_{\alpha}^{e}+\sum_{\alpha=1}^{N} \sum_{\beta=\alpha+1}^{N} U_{\alpha \beta}^{i}\right)
$$

where $\nabla_{\gamma}=$ gradient with respect to \mathbf{r}_{γ}
(ex: $\nabla_{3}=\frac{\partial}{\partial x_{3}} \hat{\mathbf{x}}+\frac{\partial}{\partial y_{3}} \hat{\mathbf{y}}+\frac{\partial}{\partial z_{3}} \hat{\mathbf{z}}$ in Cartesian coordinates).
The ∇_{γ} operator selects the $\alpha=\gamma$ and $\beta=\gamma$ terms from these sums:

$$
\begin{aligned}
\mathbf{F}_{\gamma} & =-\nabla_{\gamma} U_{\gamma}^{e}-\nabla_{\gamma} \sum_{\beta=\gamma+1}^{N} U_{\gamma \beta}^{i}-\nabla_{\gamma} \sum_{\alpha=1}^{\gamma-1} U_{\alpha \gamma}^{i} \\
& =-\nabla_{\gamma} U_{\gamma}^{e}-\nabla_{\gamma} \sum_{\beta \neq \gamma}^{N} U_{\gamma \beta}^{i} \quad \text { since } U_{\alpha \gamma}^{i}=U_{\gamma \alpha}^{i} \text { by Newton III }
\end{aligned}
$$

Suppose we have a 3 -particle system.
What is the total force on particle $\gamma=2$?

$$
\begin{aligned}
\mathbf{F}_{2} & =-\nabla_{2} U_{2}^{e}-\nabla_{2} \sum_{\beta \neq 2} U_{2 \beta}^{i} \\
& =\mathbf{F}_{2}^{e}+\mathbf{f}_{21}+\mathbf{f}_{23}
\end{aligned}
$$

VIII. The system's total energy $E=T+U$ is a constant for a conservative system.

This is rigorously proven in Section 9.5, but we will not do this here since the proof is similar to that for a one-particle system we did in Chapter 2.

