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Chapter 6: Calculus of Variations

A mathematical method that will be used in Chapter 7 to obtain

the Lagrange equations and Hamilton’s principle,

which are very useful reformulations of Newtonian mechanics.

Functions and functionals

The problem: determine the path y(x) such that

J =

∫ x2

x1

f [y(x), y′(x); x] dx is an extremum (ie, a min or max)

where x = independent variable (might be time, distance, angle, etc)

y(x) = dependant function

y′ = dy/dx

J = integral of the function of y(x), ie, a functional

x1 and x2 are fixed integration endpoints (could be times, distances, etc)
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Fig. 6–1.

Solution: Euler’s equation

consider y(α, x) = y(0, x) + αη(x)

where y(x) = y(0, x) = desired path that minimizes J(α)

so y(α, x) = alternate paths that result in larger J when α > 0

and η(x) = an (almost) arbitrary function obeying η(x1) = η(x2) = 0

⇒ J(α) =

∫ x2

x1

f [y(α, x), y′(α, x); x] dx

We want α to be such that J is an extremum—

what does this tell us about J(α)?

∂J

∂α

∣

∣

∣

∣

α=0

= 0 for J to have an extremum
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by Chain Rule,
∂J

∂α
=

∫ x2

x1

(

∂f

∂y

∂y

∂α
+

∂f

∂y′
∂y′

∂α

)

dx (since x is indep’ of α)

where
∂y

∂α
= η

and
∂y′

∂α
=

∂

∂α

dy

dx
=

∂

∂α

(

dy

dx

∣

∣

∣

∣

α=0

+ α
dη

dx

)

=
dη

dx

so
∂J

∂α
=

∫ x2

x1

(

∂f

∂y
η +

∂f

∂y′
dη

dx

)

dx = 0

Do the 2nd integral by parts:
∫ x2

x1

udv = uv|x2

x1
−

∫ x2

x1

vdu

u =
∂f

∂y′
dv =

dη

dx
dx = dη

du =
d

dx

(

∂f

∂y′

)

dx v = η

so 2nd integral =
∂f

∂y′
η

∣

∣

∣

∣

x2

x1

−
∫ x2

x1

d

dx

(

∂f

∂y′

)

η(x)dx

and recall that η(x1) = η(x2) = 0 by definition

so
∂J

∂α
=

∫ x2

x1

[

∂f

∂y
− d

dx

(

∂f

∂y′

)]

η(x)dx = 0

for any η(x) that is (almost) arbitrary.

What does this tell us about the integrand?

⇒ ∂f

∂y
− d

dx

(

∂f

∂y′

)

= 0

This is Euler’s equation,

whose solution yields the path y(x) that minimizes/maximizes J .
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Note that many physics problems (optics, mechanics, etc) also seek the path

y(x) that minimize J .

Ex. 6.1, the brachistochrone problem

Brachistochrone=Greek for path of shortest delay.

This classic physics problem was solved by Bernoulli in 1696.

A bead slides along a frictionless wire due to gravity,

from rest at point (x1, y1) = (0, 0) to point (x2, y2).

What is the shape of the wire y(x) that minimizes the travel time?

Fig. 6–3.

where independent coordinate x = bead’s vertical position

and y(x) = its horizontal position.
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Since dt = ds/v = time for bead to traverse small distance ds,

the total travel time is t =

∫ (x2,y2)

(0,0)

ds

v

where ds =
√

dx2 + dy2 = (1 + y′2)1/2dx = small path segment

particle’s energy E =
1

2
mv2 − mgx = 0 (recall zeropoint is arbitrary)

so velocity v(x) =
√

2gx

and t =

∫ x2

0

√

1 + y′2

2gx
dx

What is our functional J? What is f?

The total travel time t is thus minimized when

the path y(x) satisfies Euler’s Eqn.:

∂f

∂y
− d

dx

(

∂f

∂y′

)

= 0

where f(y, y′; x) =

√

1 + y′2

2gx

since
∂f

∂y
= 0,

⇒ ∂f

∂y′
= constant C =

(1 + y′2)−1/22y′

2
√

2gx
=

y′
√

2gx(1 + y′2)

so y′2 = 2gC2x(1 + y′2)

y′2(1 − 2gC2x) = 2gC2x

so y′ =
dy

dx
=

√

2gC2x

1 − 2gC2x
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Now what?

∫ x2

0

dy = y(x) =

∫ x

0

√

2gC2x

1 − 2gC2x
dx

Recall that C = some unknown constant,

so set 2gC2 = 1/2a where a is some other constant:

y(x2) =

∫ x2

0

√

x/2a

1 − x/2a
=

∫ x2

0

xdx√
2ax − x2

after multiplying by
√

2ax upstairs & downstairs.

To solve this integral, change variables:

x = a(1 − cos θ)

so dx = a sin θdθ

and y =

∫ θ

0

a2(1 − cos θ) sin θdθ
√

2a2(1 − cos θ) − a2(1 − 2 cos θ + cos2 θ)

note denominator =
√

a2(1 − cos2 θ) = a sin θ

so y =

∫ θ

0

a(1 − cos θ)dθ

or y(θ) = a(θ − sin θ)

and x(θ) = a(1 − cos θ)
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This is the equation for a cycloid= a curve traced by a point on a circle of

radius a rolling along the x = 0 plane:

x(θ) = xc + ∆x(θ)

y(θ) = yc + ∆y(θ)

where x + c = a & yc = aθ is the motion of the cycloid’s center

and ∆x(θ) = −a cos θ

∆y(θ) = −a sin θ are the bead’s displacements from the center

The radius a is chosen so that the bead passes thru endpoint (x2, y2).

Fig. 6–4.

Note also that a straight wire does not minimize travel time.
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Euler’s Eqn. for N dimensional problem

suppose f = f(y1, y2, y3, . . . , y
′
1, y

′
2, y

′
3, . . . ; x)

≡ f(yi, y
′
i; x) where i = 1, 2, 3, . . . , N

write yi(α, x) = yi(0, x) + αηi(x)

where yi(0, x) = yi(x) = trajectory along i–axis that minimizes J

and ηi(x1) = ηi(x2) = 0 at trajectory endpoints

recall J =

∫ x2

x1

f(yi, y
′
i; x)dx

so
dJ

dα
=

∫ x2

x1

N
∑

i=1

(

∂f

∂yi

∂yi

∂α
+

∂f

∂y′i

∂y′i
∂α

)

dx

and note that
∂yi

∂α
= ηi

Integrate 2nd term by parts:

u =
∂f

∂y′i
dv =

∂y′i
∂α

dx =
∂ηi

∂x
dx = dηi

du =
d

dx

(

∂f

∂y′i

)

dx v = ηi

so the 2nd term =
N

∑

i=1

[

∂f

∂y′i
ηi

∣

∣

∣

∣

x2

x1

−
∫ x2

x1

d

dx

(

∂f

∂y′i

)

ηidx

]

and
dJ

dα
=

N
∑

i=1

∫ x2

x1

[

∂f

∂yi
− d

dx

(

∂f

∂y′i

)]

ηi(x)dx

= 0 when J is an extremum

Since the ηi(x) are (almost) arbitrary functions of x, each individual ith

integrand in the [] must also be zero:

⇒ ∂f

∂yi
− d

dx

(

∂f

∂y′i

)

= 0

which is Euler’s eqn. in N–dimensions
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