Lecture Notes for PHY 405
 Classical Mechanics

From Thorton \& Marion's Classical Mechanics
Prepared by
Dr. Joseph M. Hahn
Saint Mary's University
Department of Astronomy \& Physics
October 11, 2005

Chapter 6: Calculus of Variations

A mathematical method that will be used in Chapter 7 to obtain the Lagrange equations and Hamilton's principle, which are very useful reformulations of Newtonian mechanics.

Functions and functionals

The problem: determine the path $y(x)$ such that

$$
J=\int_{x_{1}}^{x_{2}} f\left[y(x), y^{\prime}(x) ; x\right] d x \quad \text { is an extremum (ie, a min or max) }
$$

where $x=$ independent variable (might be time, distance, angle, etc) $y(x)=$ dependant function
$y^{\prime}=d y / d x$
$J=$ integral of the function of $y(x)$, ie, a functional x_{1} and x_{2} are fixed integration endpoints (could be times, distances, etc)

Fig. 6-1.

Solution: Euler's equation

consider $y(\alpha, x)=y(0, x)+\alpha \eta(x)$
where $y(x)=y(0, x)=$ desired path that minimizes $J(\alpha)$
so $\quad y(\alpha, x)=$ alternate paths that result in larger J when $\alpha>0$ and $\quad \eta(x)=$ an (almost) arbitrary function obeying $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ $\Rightarrow J(\alpha)=\int_{x_{1}}^{x_{2}} f\left[y(\alpha, x), y^{\prime}(\alpha, x) ; x\right] d x$

We want α to be such that J is an extremumwhat does this tell us about $J(\alpha)$?

$$
\left.\frac{\partial J}{\partial \alpha}\right|_{\alpha=0}=0 \quad \text { for } J \text { to have an extremum }
$$

by Chain Rule, $\frac{\partial J}{\partial \alpha}=\int_{x_{1}}^{x_{2}}\left(\frac{\partial f}{\partial y} \frac{\partial y}{\partial \alpha}+\frac{\partial f}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial \alpha}\right) d x \quad$ (since x is indep' of α)

$$
\begin{aligned}
& \text { where } \frac{\partial y}{\partial \alpha}=\eta \\
& \text { and } \frac{\partial y^{\prime}}{\partial \alpha}=\frac{\partial}{\partial \alpha} \frac{d y}{d x}=\frac{\partial}{\partial \alpha}\left(\left.\frac{d y}{d x}\right|_{\alpha=0}+\alpha \frac{d \eta}{d x}\right)=\frac{d \eta}{d x} \\
& \text { so } \frac{\partial J}{\partial \alpha}=\int_{x_{1}}^{x_{2}}\left(\frac{\partial f}{\partial y} \eta+\frac{\partial f}{\partial y^{\prime}} \frac{d \eta}{d x}\right) d x=0
\end{aligned}
$$

Do the $2^{\text {nd }}$ integral by parts:

$$
\begin{aligned}
\int_{x_{1}}^{x_{2}} u d v & =\left.u v\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}} v d u \\
u & =\frac{\partial f}{\partial y^{\prime}} \quad d v=\frac{d \eta}{d x} d x=d \eta \\
d u & =\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right) d x \quad v=\eta \\
\text { so } 2^{n d} \text { integral } & =\left.\frac{\partial f}{\partial y^{\prime}} \eta\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}} \frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right) \eta(x) d x
\end{aligned}
$$

and recall that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ by definition

$$
\text { so } \frac{\partial J}{\partial \alpha}=\int_{x_{1}}^{x_{2}}\left[\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)\right] \eta(x) d x=0
$$

for any $\eta(x)$ that is (almost) arbitrary.

What does this tell us about the integrand?

$$
\Rightarrow \frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0
$$

This is Euler's equation, whose solution yields the path $y(x)$ that minimizes/maximizes J.

Note that many physics problems (optics, mechanics, etc) also seek the path $y(x)$ that minimize J.

Ex. 6.1, the brachistochrone problem

Brachistochrone=Greek for path of shortest delay.
This classic physics problem was solved by Bernoulli in 1696.
A bead slides along a frictionless wire due to gravity, from rest at point $\left(x_{1}, y_{1}\right)=(0,0)$ to point $\left(x_{2}, y_{2}\right)$.

What is the shape of the wire $y(x)$ that minimizes the travel time?

Fig. 6-3.
where independent coordinate $x=$ bead's vertical position and $y(x)=$ its horizontal position.

Since $d t=d s / v=$ time for bead to traverse small distance $d s$,
the total travel time is $\quad t=\int_{(0,0)}^{\left(x_{2}, y_{2}\right)} \frac{d s}{v}$
where $\quad d s=\sqrt{d x^{2}+d y^{2}}=\left(1+y^{\prime 2}\right)^{1 / 2} d x=$ small path segment
particle's energy $E=\frac{1}{2} m v^{2}-m g x=0 \quad$ (recall zeropoint is arbitrary)
so velocity $v(x)=\sqrt{2 g x}$

$$
\text { and } \quad t=\int_{0}^{x_{2}} \sqrt{\frac{1+y^{\prime 2}}{2 g x}} d x
$$

What is our functional J ? What is f ?

The total travel time t is thus minimized when the path $y(x)$ satisfies Euler's Eqn.:

$$
\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0
$$

where $f\left(y, y^{\prime} ; x\right)=\sqrt{\frac{1+y^{\prime 2}}{2 g x}}$

$$
\begin{aligned}
\text { since } \begin{aligned}
\frac{\partial f}{\partial y} & =0 \\
\Rightarrow \frac{\partial f}{\partial y^{\prime}} & =\text { constant } \mathrm{C}=\frac{\left(1+y^{\prime 2}\right)^{-1 / 2} 2 y^{\prime}}{2 \sqrt{2 g x}}=\frac{y^{\prime}}{\sqrt{2 g x\left(1+y^{\prime 2}\right)}} \\
\text { so } y^{\prime 2} & =2 g C^{2} x\left(1+y^{\prime 2}\right) \\
y^{\prime 2}\left(1-2 g C^{2} x\right) & =2 g C^{2} x \\
\text { so } y^{\prime} & =\frac{d y}{d x}=\sqrt{\frac{2 g C^{2} x}{1-2 g C^{2} x}}
\end{aligned} .
\end{aligned}
$$

Now what?

$$
\int_{0}^{x_{2}} d y=y(x)=\int_{0}^{x} \sqrt{\frac{2 g C^{2} x}{1-2 g C^{2} x}} d x
$$

Recall that $C=$ some unknown constant, so set $2 g C^{2}=1 / 2 a$ where a is some other constant:

$$
y\left(x_{2}\right)=\int_{0}^{x_{2}} \sqrt{\frac{x / 2 a}{1-x / 2 a}}=\int_{0}^{x_{2}} \frac{x d x}{\sqrt{2 a x-x^{2}}}
$$

after multiplying by $\sqrt{2 a x}$ upstairs \& downstairs.

To solve this integral, change variables:

$$
\begin{aligned}
x & =a(1-\cos \theta) \\
\text { so } d x & =a \sin \theta d \theta \\
\text { and } y & =\int_{0}^{\theta} \frac{a^{2}(1-\cos \theta) \sin \theta d \theta}{\sqrt{2 a^{2}(1-\cos \theta)-a^{2}\left(1-2 \cos \theta+\cos ^{2} \theta\right)}} \\
\text { note denominator } & =\sqrt{a^{2}\left(1-\cos ^{2} \theta\right)}=a \sin \theta \\
\text { so } y & =\int_{0}^{\theta} a(1-\cos \theta) d \theta \\
\text { or } y(\theta) & =a(\theta-\sin \theta) \\
\text { and } \quad x(\theta) & =a(1-\cos \theta)
\end{aligned}
$$

This is the equation for a cycloid= a curve traced by a point on a circle of radius a rolling along the $x=0$ plane:

$$
\begin{aligned}
x(\theta) & =x_{c}+\Delta x(\theta) \\
y(\theta) & =y_{c}+\Delta y(\theta)
\end{aligned}
$$

where $x+c=a$ \& $y_{c}=a \theta$ is the motion of the cycloid's center and $\Delta x(\theta)=-a \cos \theta$

$$
\Delta y(\theta)=-a \sin \theta \text { are the bead's displacements from the center }
$$

The radius a is chosen so that the bead passes thru endpoint $\left(x_{2}, y_{2}\right)$.

Fig. 6-4.

Note also that a straight wire does not minimize travel time.

Euler's Eqn. for N dimensional problem

$$
\begin{aligned}
\text { suppose } \quad f & =f\left(y_{1}, y_{2}, y_{3}, \ldots, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, \ldots ; x\right) \\
& \equiv f\left(y_{i}, y_{i}^{\prime} ; x\right) \quad \text { where } i=1,2,3, \ldots, N
\end{aligned}
$$

$$
\text { write } y_{i}(\alpha, x)=y_{i}(0, x)+\alpha \eta_{i}(x)
$$

$$
\text { where } y_{i}(0, x)=y_{i}(x)=\text { trajectory along } i \text {-axis that minimizes } J
$$

$$
\text { and } \quad \eta_{i}\left(x_{1}\right)=\eta_{i}\left(x_{2}\right)=0 \text { at trajectory endpoints }
$$

$$
\text { recall } \quad J=\int_{x_{1}}^{x_{2}} f\left(y_{i}, y_{i}^{\prime} ; x\right) d x
$$

$$
\text { so } \frac{d J}{d \alpha}=\int_{x_{1}}^{x_{2}} \sum_{i=1}^{N}\left(\frac{\partial f}{\partial y_{i}} \frac{\partial y_{i}}{\partial \alpha}+\frac{\partial f}{\partial y_{i}^{\prime}} \frac{\partial y_{i}^{\prime}}{\partial \alpha}\right) d x
$$

and note that $\frac{\partial y_{i}}{\partial \alpha}=\eta_{i}$
Integrate $2^{\text {nd }}$ term by parts:

$$
\begin{aligned}
u & =\frac{\partial f}{\partial y_{i}^{\prime}} \quad \quad d v=\frac{\partial y_{i}^{\prime}}{\partial \alpha} d x=\frac{\partial \eta_{i}}{\partial x} d x=d \eta_{i} \\
d u & =\frac{d}{d x}\left(\frac{\partial f}{\partial y_{i}^{\prime}}\right) d x \quad v=\eta_{i} \\
\text { so the } 2^{n d} \text { term } & =\sum_{i=1}^{N}\left[\left.\frac{\partial f}{\partial y_{i}^{\prime}} \eta_{i}\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}} \frac{d}{d x}\left(\frac{\partial f}{\partial y_{i}^{\prime}}\right) \eta_{i} d x\right] \\
\text { and } \frac{d J}{d \alpha} & =\sum_{i=1}^{N} \int_{x_{1}}^{x_{2}}\left[\frac{\partial f}{\partial y_{i}}-\frac{d}{d x}\left(\frac{\partial f}{\partial y_{i}^{\prime}}\right)\right] \eta_{i}(x) d x \\
& =0 \text { when } J \text { is an extremum }
\end{aligned}
$$

Since the $\eta_{i}(x)$ are (almost) arbitrary functions of x, each individual $i^{\text {th }}$ integrand in the [] must also be zero:

$$
\Rightarrow \frac{\partial f}{\partial y_{i}}-\frac{d}{d x}\left(\frac{\partial f}{\partial y_{i}^{\prime}}\right)=0
$$

which is Euler's eqn. in N-dimensions

