Lecture Notes for PHY 405 Classical Mechanics

From Thorton & Marion's Classical Mechanics

Prepared by Dr. Joseph M. Hahn Saint Mary's University Department of Astronomy & Physics

November 21, 2004

Problem Set #6 due Thursday December 1 at the start of class late homework will not be accepted

text problems 10-8, 10-18, 11-2, 11-7, 11-13, 11-20, 11-31

Final Exam Tuesday December 6 10am-1pm in MM310 (note the room change!)

Chapter 11: Dynamics of Rigid Bodies

rigid body = a collection of particles whose relative positions are fixed.

We will ignore the microscopic thermal vibrations occurring among a 'rigid' body's atoms.

The inertia tensor

Consider a rigid body that is composed of N particles. Give each particle an index $\alpha = 1 \dots N$. The total mass is $M = \sum_{\alpha} m_{\alpha}$. This body can be translating as well as rotating.

Place your moving/rotating origin on the body's CoM:

the CoM is at $\mathbf{R} = \frac{1}{M} \sum_{\alpha} m_{\alpha} \mathbf{r}'_{\alpha}$

where $\mathbf{r}'_{\alpha} = \mathbf{R} + \mathbf{r}_{\alpha} = \alpha$'s position wrt' fixed origin note that this implies $\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} = 0$

Particle α has velocity $\mathbf{v}_{f,\alpha} = d\mathbf{r}'_{\alpha}/dt$ relative to the *fixed* origin, and velocity $\mathbf{v}_{r,\alpha} = d\mathbf{r}_{\alpha}/dt$ in the reference frame that rotates about axis $\vec{\omega}$.

Then according to Eq. 10.17 (or page 6 of Chap. 10 notes):

 $\mathbf{v}_{f,\alpha} = \mathbf{V} + \mathbf{v}_{r,\alpha} + \vec{\omega} \times \mathbf{r}_{\alpha} = \alpha$'s velocity measured wrt' fixed origin and $\mathbf{V} = d\mathbf{R}/dt$ = velocity of the moving origin relative to the fixed origin.

What is $\mathbf{v}_{r,\alpha}$ for the particles that make up this rigid body?

Thus $\mathbf{v}_{\alpha} = \mathbf{V} + \vec{\omega} \times \mathbf{r}_{\alpha}$ after dropping the f subscript and $T_{\alpha} = \frac{1}{2}m_{\alpha}\mathbf{v}_{\alpha}^{2} = \frac{1}{2}m_{\alpha}(\mathbf{V} + \vec{\omega} \times \mathbf{r}_{\alpha})^{2}$ is the particle's KE so $T = \sum_{\alpha=1}^{N} T_{\alpha}$ the system's total KE is $= \frac{1}{2}M\mathbf{V}^{2} + \sum_{\alpha} m_{\alpha}\mathbf{V} \cdot (\vec{\omega} \times \mathbf{r}_{\alpha}) + \frac{1}{2}\sum_{\alpha} m_{\alpha}(\vec{\omega} \times \mathbf{r}_{\alpha})^{2}$ $= \frac{1}{2}M\mathbf{V}^{2} + \mathbf{V} \cdot \left(\vec{\omega} \times \sum_{\alpha} m_{\alpha}\mathbf{r}_{\alpha}\right) + \frac{1}{2}\sum_{\alpha} m_{\alpha}(\vec{\omega} \times \mathbf{r}_{\alpha})^{2}$

where $M = \sum_{\alpha} m_{\alpha}$ = the system's total mass.

Recall that $\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} = 0$, so

thus
$$T = T_{trans} + T_{rot}$$

where $T_{trans} = \frac{1}{2}M\mathbf{V}^2 = \text{KE}$ due to system's translation
and $T_{rot} = \frac{1}{2}\sum_{\alpha} m_{\alpha}(\vec{\omega} \times \mathbf{r}_{\alpha})^2 = \text{KE}$ due to system's rotation

Now focus on T_{rot} , and note that $(\mathbf{A} \times \mathbf{B})^2 = A^2 B^2 - (\mathbf{A} \cdot \mathbf{B})^2 \leftarrow$ see text page 28 for proof.

Thus

$$T_{rot} = \frac{1}{2} \sum_{\alpha} m_{\alpha} [\omega^2 r_{\alpha}^2 - (\vec{\omega} \cdot \mathbf{r}_{\alpha})^2]$$

In Cartesian coordinates,

$$\vec{\omega} = \omega_x \hat{\mathbf{x}} + \omega_y \hat{\mathbf{y}} + \omega_z \hat{\mathbf{z}}$$

so $\omega^2 = \omega_x^2 + \omega_y^2 + \omega_z^2 \equiv \sum_{i=1}^3 \omega_i^2$
and $\mathbf{r}_{\alpha} = \sum_{i=1}^3 x_{\alpha,i} \hat{\mathbf{x}}_i$
so $\vec{\omega} \cdot \mathbf{r}_{\alpha} = \sum_{i=1}^3 \omega_i x_{\alpha,i}$

Thus

$$T_{rot} = \frac{1}{2} \sum_{\alpha} m_{\alpha} \left[\left(\sum_{i=1}^{3} \omega_i^2 \right) \left(\sum_{k=1}^{3} x_{\alpha,k}^2 \right) - \left(\sum_{i=1}^{3} \omega_i x_{\alpha,i} \right) \left(\sum_{j=1}^{3} \omega_j x_{\alpha,j} \right) \right]$$

We can also write

$$\omega_{i} = \sum_{j=1}^{3} \omega_{j} \delta_{i,j}$$
where $\delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$
so $\omega_{i}^{2} = \omega_{i} \sum_{j=1}^{3} \omega_{j} \delta_{i,j} = \sum_{j=1}^{3} \omega_{i} \omega_{j} \delta_{i,j}$
and also note that $\left(\sum_{i} a_{i}\right) \left(\sum_{i} b_{i}\right) = \sum_{i} \sum_{j} a_{i} b_{i} \equiv \sum_{i,j} a_{i} b_{i}$

so
$$T_{rot} = \frac{1}{2} \sum_{\alpha} m_{\alpha} \left[\sum_{i,j} \omega_i \omega_j \delta_{i,j} \left(\sum_{k=1}^3 x_{\alpha,k}^2 \right) - \sum_{i,j} \omega_i \omega_j x_{\alpha,i} x_{\alpha,j} \right]$$

 $= \frac{1}{2} \sum_{\alpha} m_{\alpha} \sum_{i,j} \omega_i \omega_j \left[\delta_{i,j} \sum_{k=1}^3 x_{\alpha,k}^2 - x_{\alpha,i} x_{\alpha,j} \right]$
 $= \frac{1}{2} \sum_{i,j} \omega_i \omega_j \sum_{\alpha} m_{\alpha} \left[\delta_{i,j} \sum_{k=1}^3 x_{\alpha,k}^2 - x_{\alpha,i} x_{\alpha,j} \right]$
 $\equiv \frac{1}{2} \sum_{i=1}^3 \sum_{j=1}^3 I_{i,j} \omega_i \omega_j$
where $I_{i,j} \equiv \sum_{\alpha} m_{\alpha} \left[\delta_{i,j} \sum_{k=1}^3 x_{\alpha,k}^2 - x_{\alpha,i} x_{\alpha,j} \right]$

are the 9 elements of a 3×3 matrix called the *inertial tensor* {**I**}.

Note that the $I_{i,j}$ has units of mass×length².

Since $x_{\alpha,1} = x_{\alpha}, x_{\alpha,2} = y_{\alpha}, x_{\alpha,3} = z_{\alpha}$,

$$\{\mathbf{I}\} = \left\{ \begin{array}{ccc} \sum_{\alpha} m_{\alpha}(y_{\alpha}^{2} + z_{\alpha}^{2}) & -\sum_{\alpha} m_{\alpha}x_{\alpha}y_{\alpha} & -\sum_{\alpha} m_{\alpha}x_{\alpha}z_{\alpha} \\ -\sum_{\alpha} m_{\alpha}y_{\alpha}x_{\alpha} & \sum_{\alpha} m_{\alpha}(x_{\alpha}^{2} + z_{\alpha}^{2}) & -\sum_{\alpha} m_{\alpha}y_{\alpha}z_{\alpha} \\ -\sum_{\alpha} m_{\alpha}z_{\alpha}x_{\alpha} & -\sum_{\alpha} m_{\alpha}z_{\alpha}y_{\alpha} & \sum_{\alpha} m_{\alpha}(x_{\alpha}^{2} + y_{\alpha}^{2}) \end{array} \right\}$$

Be sure to write your matrix elements $I_{i,j}$ consistently; here, the *i* index increments down along a column while the *j* index increments across a row.

Also note that $I_{i,j} = I_{j,i} \Rightarrow$ the inertia tensor is symmetric.

The diagonal elements $I_{i,i}$ = the moments of inertia while the off-diagonal elements $I_{i\neq j}$ =the products of inertia For a continuous body, $m_{\alpha} \rightarrow dm = \rho(\mathbf{r})dV$

$$dI_{i,j} \rightarrow \left(\delta_{i,j} \sum_{k=1}^{3} x_k^2 - x_i x_j\right) dm$$

= the contribution to $I_{i,j}$ due to mass element $dm = \rho dV$
thus $I_{i,j} = \int_V dI_{i,j} = \int_V \rho(\mathbf{r}) \left(\delta_{i,j} \sum_{k=1}^{3} x_k^2 - x_i x_j\right) dV$

where the integration proceeds over the system's volume V.

Example 11.3

Calculate $\{\mathbf{I}\}\$ for a cube of mass M and width b and uniform density $\rho = M/b^3$. Place the origin at one corner of the cube.

Fig. 11-3.

$$I_{1,1} = \rho \int_0^b dx \int_0^b dy \int_0^b dz (x^2 + y^2 + z^2 - x^2)$$

= $\rho b \int_0^b dy (y^2 b + \frac{1}{3} b^3)$
= $\rho b (\frac{1}{3} b^4 + \frac{1}{3} b^4)$
= $\frac{2}{3} \rho b^5 = \frac{2}{3} M b^2$

It is straightforward to show that the other diagonal elements are $I_{2,2} = I_{3,3} = I_{1,1}$.

The off-diagonal elements are similarly identical:

$$I_{1,2} = -\rho \int_{0}^{b} dx \int_{0}^{b} dy \int_{0}^{b} dz \cdot xy$$

= $-\rho \left(\frac{1}{2}b^{2}\right) \left(\frac{1}{2}b^{2}\right) b = -\frac{1}{4}\rho b^{5} = -\frac{1}{4}Mb^{2}$
= $I_{i \neq j}$

Thus this cube has an inertia tensor

$$\{\mathbf{I}\} = Mb^2 \left\{ \begin{array}{rrr} 2/3 & -1/4 & -1/4 \\ -1/4 & 2/3 & -1/4 \\ -1/4 & -1/4 & 2/3 \end{array} \right\}$$

Principal Axes of Inertia

The axes $\hat{\mathbf{x}}_i$ that diagonalizes a body's inertia tensor $\{\mathbf{I}\}$ is called the *principal axes of inertia*.

In this case

$$I_{i,j} = I_i \delta_{i,j}$$

so $T_{rot} = \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} I_{i,j} \omega_i \omega_j = \text{ rotational KE}$
$$= \frac{1}{2} \sum_{i=1}^{3} I_i \omega_i^2$$

where the three I_i are the body's principal moments of inertia.

If this body is also rotating about one of its principal axis, say, the $\hat{\mathbf{z}}$, then $\vec{\omega} = \omega \hat{\mathbf{z}}$ and

$$T_{rot} = \frac{1}{2}I_z\omega^2$$

which is the familiar formula for the rotational KE in terms of inertia I_z found in the elementary textbooks.

 \Rightarrow those formulae with $T_{rot} = \frac{1}{2}I\omega^2$ are only valid when the rotation axis $\vec{\omega}$ lies along one of the body's three principal axes.

The procedure for determining the orientation of a body's principal axes of inertia is given in Section 11.5.

Angular Momentum

The system's total angular momentum relative to the moving/rotating origin \mathcal{O}_{rot} is

$$\mathbf{L} = \sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{v}_{\alpha}$$

where \mathbf{r}_{α} and \mathbf{v}_{α} are α 'a position and velocity relative to \mathcal{O}_{rot} .

Recall that $\mathbf{v}_{\alpha} = \vec{\omega} \times \mathbf{r}_{\alpha}$ for this rigid body (Eqn. 10.17), so

$$\mathbf{L} = \sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} \times (\vec{\omega} \times \mathbf{r}_{\alpha})$$

Chapter 1 and problem 1-22 show that

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{A}) = A^2 \mathbf{B} - (\mathbf{A} \cdot \mathbf{B}) \mathbf{A}$$

so
$$\mathbf{L} = \sum_{\alpha} m_{\alpha} [r_{\alpha}^2 \vec{\omega} - (\mathbf{r}_{\alpha} \cdot \vec{\omega}) \mathbf{r}_{\alpha}]$$

and the i^{th} component of **L** is

$$L_i = \sum_{\alpha} m_{\alpha} [r_{\alpha}^2 \omega_i - (\mathbf{r}_{\alpha} \cdot \vec{\omega}) x_{\alpha,i}]$$

And again use

$$r_{\alpha}^{2} = \sum_{k=1}^{3} x_{\alpha,k}^{2} \qquad \mathbf{r}_{\alpha} \cdot \vec{\omega} = \sum_{j=1}^{3} x_{\alpha,j} \omega_{j} \qquad \omega_{i} = \sum_{j=1}^{3} \omega_{j} \delta_{i,j}$$

So

$$L_{i} = \sum_{\alpha} m_{\alpha} \left(\sum_{k=1}^{3} x_{\alpha,k}^{2} \sum_{j=1}^{3} \omega_{j} \delta_{i,j} - \sum_{j=1}^{3} x_{\alpha,j} \omega_{j} x_{\alpha,i} \right)$$
$$= \sum_{j=1}^{3} \omega_{j} \sum_{\alpha} m_{\alpha} \left(\delta_{i,j} \sum_{k=1}^{3} x_{\alpha,k}^{2} - x_{\alpha,i} x_{\alpha,j} \right)$$
$$= \sum_{j=1}^{3} I_{ij} \omega_{j}$$

where the $I_{i,j}$ are the elements of the inertial tensor $\{I\}$.

Note that

$$\mathbf{L} = \sum_{i=1}^{3} L_i \mathbf{\hat{x}}_i = \sum_{i=1}^{3} \sum_{j=1}^{3} I_{ij} \omega_j \mathbf{\hat{x}}_i$$
$$= \{\mathbf{I}\} \cdot \vec{\omega}$$

Lets confirm this last step by explicitly doing the matrix multiplication:

$$\mathbf{L} = \begin{pmatrix} L_{1} \\ L_{2} \\ L_{3} \end{pmatrix} = \{\mathbf{I}\} \cdot \vec{\omega} = \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{pmatrix} \begin{pmatrix} \omega_{1} \\ \omega_{2} \\ \omega_{3} \end{pmatrix}$$
$$= \begin{pmatrix} I_{11}\omega_{1} + I_{12}\omega_{2} + I_{13}\omega_{3} \\ I_{21}\omega_{1} + I_{22}\omega_{2} + I_{23}\omega_{3} \\ I_{31}\omega_{1} + I_{32}\omega_{2} + I_{33}\omega_{3} \end{pmatrix} = \begin{pmatrix} \sum_{j} I_{1j}\omega_{j} \\ \sum_{j} I_{2j}\omega_{j} \\ \sum_{j} I_{3j}\omega_{j} \end{pmatrix}$$

which confirms $\mathbf{L} = {\mathbf{I}} \cdot \vec{\omega}$.

Evidently the inertia tensor relates the system's angular momentum \mathbf{L} to its spin axis $\vec{\omega}$.

Now examine

$$\sum_{i=1}^{3} \frac{1}{2} \omega_i L_i = \frac{1}{2} \vec{\omega} \cdot \mathbf{L} = \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} I_{ij} \omega_i \omega_j$$
$$= T_{rot} = \text{ the body's KE due to its rotation}$$
$$\Rightarrow T_{rot} = \frac{1}{2} \vec{\omega} \cdot \mathbf{L} = \frac{1}{2} \vec{\omega} \cdot \{\mathbf{I}\} \cdot \vec{\omega}$$

Note that the RHS is a scalar (as is should) since $\{\mathbf{I}\} \cdot \vec{\omega}$ is a vector, and a vector vector = scalar.

Chapter 9 showed that if an external torque ${f N}$ is applied to the body, then

$$\mathbf{N} = \frac{d\mathbf{L}}{dt} = \{\mathbf{I}\} \cdot \dot{\vec{\omega}}$$

since $\{I\}$ is a constant.

We now have several methods available for obtaining the equation of motion: Newton's Laws,

Lagrange equations,

Hamilton's equation,

and $\mathbf{N} = {\mathbf{I}} \cdot \dot{\vec{\omega}}$ (which follows from Newton's Laws)

the latter equation is usually quite handy for rotating rigid bodies.

Example 11.4

A plane pendulum with two masses: m_1 lies at one end of the rod of length b, while m_2 is at the midpoint. What is the frequency of small oscillations?

Fig. 11-5.

This solution will use $\mathbf{N} = {\mathbf{I}} \cdot \dot{\vec{\omega}}$. Note that $\vec{\omega} = \dot{\theta} \hat{\mathbf{z}}$ which point out of the page, so $\dot{\vec{\omega}} = \ddot{\theta} \hat{\mathbf{z}}$. The inertia tensor has elements

$$I_{ij} = \sum_{\alpha} m_{\alpha} \left(\delta_{i,j} \sum_{k=1}^{3} x_{\alpha,k}^{2} - x_{\alpha,i} x_{\alpha,j} \right)$$

so $I_{11} = 0$
 $I_{22} = m_{1}(b^{2} - 0) + m_{2} \left[\left(\frac{b}{2} \right)^{2} - 0 \right] = (m_{1} + \frac{1}{4}m_{2})b^{2}$
 $= I_{33}$
 $I_{12} = -m_{1}b \cdot 0 - m_{2} \left(\frac{b}{2} \right) \cdot 0 = 0$
e all $I_{i \neq j} = 0$

likewise all $I_{i \neq j} = 0$

Thus

$$\{\mathbf{I}\} = \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & (m_1 + \frac{1}{4}m_2)b^2 & 0 \\ 0 & 0 & (m_1 + \frac{1}{4}m_2)b^2 \end{array} \right\}$$

The torque on the masses due to gravity is

$$\mathbf{N} = \sum_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{F}_{\alpha}$$
$$= \sum_{\alpha} \mathbf{r}_{\alpha} \times m_{\alpha} \mathbf{g}_{\alpha}$$
where $\mathbf{g} = g \cos \theta \mathbf{\hat{x}} - g \sin \theta \mathbf{\hat{y}}$ and $\mathbf{r}_{\alpha} = r_{\alpha} \mathbf{\hat{x}}$ so $\mathbf{r}_{\alpha} \times \mathbf{g} = -r_{\alpha}g \sin \theta (\mathbf{\hat{x}} \times \mathbf{\hat{y}} = \mathbf{\hat{z}})$ and $\mathbf{N} = -m_{1}bg \sin \theta \mathbf{\hat{z}} - m_{2}\frac{b}{2}g \sin \theta \mathbf{\hat{z}}$
$$= -\left(m_{1} + \frac{1}{2}m_{2}\right)bg \sin \theta \mathbf{\hat{z}}$$

Since $\mathbf{N} = {\mathbf{I}} \cdot \dot{\vec{\omega}}$,

$$\begin{pmatrix} 0 \\ 0 \\ -(m_1 + \frac{1}{2}m_2)bg\sin\theta \end{pmatrix} = \begin{cases} 0 & 0 & 0 \\ 0 & (m_1 + \frac{1}{4}m_2)b^2 & 0 \\ 0 & 0 & (m_1 + \frac{1}{4}m_2)b^2 \end{cases} \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \\ \ddot{\theta} \end{pmatrix}$$
$$\Rightarrow -(m_1 + \frac{1}{2}m_2)bg\sin\theta = (m_1 + \frac{1}{4}m_2)b^2\ddot{\theta}$$
or $\ddot{\theta} + \omega_0^2\theta \simeq 0$ for small $|\theta|$ where $\omega_0 = \sqrt{\frac{m_1 + \frac{1}{2}m_2}{m_1 + \frac{1}{4}m_2}} \left(\frac{g}{b}\right)$

is the frequency of small oscillations.

Note that you could also have solved this problem using the Lagrange equations.

Since $\{\mathbf{I}\}$ is diagonal, our coordinate system is evidently the pendulum's principal axes. In this case, the system's Lagrangian L is

$$L = T + U$$

where $T = T_{rot} = \frac{1}{2} \sum_{i=1}^{3} I_i \omega_i^2$
where I_i = the diagonal elements
so $T = \frac{1}{2} I_{33} \omega^2 = \frac{1}{2} (m_1 + \frac{1}{4} m_2) b^2 \dot{\theta}^2$
and $U = -m_1 g b \cos \theta - m_2 g \frac{b}{2} \cos \theta$

The resulting Lagrange will lead to the same equation of motion, namely $\ddot{\theta} \simeq \omega_0^2 \theta$.

Euler's equations for a rigid body

The following will derive *Euler's equations* for a rigid body, which describe how a rigid body's orientation is altered when a torque is applied.

Recall that a rotating rigid body has angular momenta components

$$L_{i} = \sum_{j=1}^{3} I_{ij}\omega_{j} \quad (\text{see Eq. 11.20a})$$

so $\mathbf{L} = \sum_{i=1}^{3} L_{i}\mathbf{\hat{x}}_{i} = \sum_{i=1}^{3} \sum_{j=1}^{3} I_{ij}\omega_{j}\mathbf{\hat{x}}_{i} = \text{ total angular momentum vector}$

Keep in mind that the $\hat{\mathbf{x}}_i$ are the axes in the *rotating* coordinate system.

Now exert a external torque $\mathbf{N} = \mathbf{\dot{L}}$ on the body.

And as is usual, all time derivatives are to be computed in the *fixed* reference frame. Thus

$$\mathbf{N} = \frac{d}{dt} \sum_{ij} I_{ij} \omega_j \mathbf{\hat{x}}_i$$
$$= \sum_{ij} I_{ij} \left[\dot{\omega}_j \mathbf{\hat{x}}_i + \omega_j \left(\frac{d \mathbf{\hat{x}}_i}{dt} \right)_{fixed} \right]$$

Recall that for any vector \mathbf{Q} ,

$$\left(\frac{d\mathbf{Q}}{dt}\right)_{fixed} = \left(\frac{d\mathbf{Q}}{dt}\right)_{rotating} + \vec{\omega} \times \mathbf{Q} \quad \text{(Eqn. 10.12)}$$

so $\left(\frac{d\hat{\mathbf{x}}_i}{dt}\right)_{fixed} = \vec{\omega} \times \hat{\mathbf{x}}_i$

Thus

$$\mathbf{N} = \sum_{ij} I_{ij} \left(\dot{\omega}_j \mathbf{\hat{x}}_i + \omega_j \vec{\omega} \times \mathbf{\hat{x}}_i \right)$$

Now lets choose our coordinate system to be the body's principal axes, so $I_{ij} = I_i \delta_{ij}$ and

$$\mathbf{N} = \sum_{i} I_{i} \left(\dot{\omega}_{i} \mathbf{\hat{x}}_{i} + \omega_{i} \vec{\omega} \times \mathbf{\hat{x}}_{i} \right)$$

= $I_{1} \dot{\omega}_{1} \mathbf{\hat{x}} + I_{2} \dot{\omega}_{2} \mathbf{\hat{y}} + I_{3} \dot{\omega}_{3} \mathbf{\hat{z}} + I_{1} \omega_{1} \vec{\omega} \times \mathbf{\hat{x}} + I_{2} \omega_{2} \vec{\omega} \times \mathbf{\hat{y}} + I_{3} \omega_{3} \vec{\omega} \times \mathbf{\hat{z}}$

Do the cross products. First note that

$$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$$

$$\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$$

$$\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$$
and $\vec{\omega} = \omega_1 \hat{\mathbf{x}} + \omega_2 \hat{\mathbf{y}} + \omega_3 \hat{\mathbf{z}} =$ the body's spin axis
so $\vec{\omega} \times \hat{\mathbf{x}} = \omega_2 \hat{\mathbf{y}} \times \hat{\mathbf{x}} + \omega_3 \hat{\mathbf{z}} \times \hat{\mathbf{x}} = -\omega_2 \hat{\mathbf{z}} + \omega_3 \hat{\mathbf{y}}$
 $\vec{\omega} \times \hat{\mathbf{y}} = \omega_1 \hat{\mathbf{z}} - \omega_3 \hat{\mathbf{x}}$
 $\vec{\omega} \times \hat{\mathbf{z}} = -\omega_1 \hat{\mathbf{y}} + \omega_2 \hat{\mathbf{x}}$

Consequently

$$\mathbf{N} = \mathbf{\hat{x}}(I_1\dot{\omega}_1 - I_2\omega_2\omega_3 + I_3\omega_3\omega_2) + \mathbf{\hat{y}}(I_2\dot{\omega}_2 + I_1\omega_1\omega_3 - I_3\omega_3\omega_1) + \mathbf{\hat{z}}(I_3\dot{\omega}_3 - I_1\omega_1\omega_2 + I_2\omega_2\omega_1)$$

The three components of this equation,

$$N_x = I_1 \dot{\omega}_1 - (I_2 - I_3) \omega_2 \omega_3$$

$$N_y = I_2 \dot{\omega}_2 - (I_3 - I_1) \omega_3 \omega_1$$

$$N_z = I_3 \dot{\omega}_3 - (I_1 - I_2) \omega_1 \omega_2$$

are known as *Euler's equations*, which relate the torque N_i to the time-rate of change $\dot{\omega}_i$ in the rigid body's orientation.

How to use Euler's eqns.

Suppose you want to know what the torque **N** does to a rigid body. In other words, how does this torque alter the body's spin axis $\vec{\omega}$ and re-orient its principal axes?

1. Choose the orientation of rotating coordinate system at some instant of time t_0 .

2. Make note of $\vec{\omega}$ and **N** at time $t = t_0$

3. Calculate $\{\mathbf{I}\}$ and use the method described in Section 11.5 do determine the body's principal moments of inertia I_1, I_2, I_3 and the orientation of its principal axes $\mathbf{\hat{x}}, \mathbf{\hat{y}}, \mathbf{\hat{z}}$ at time t_0

4. Use Euler's Equations to obtain $\dot{\omega}_1, \dot{\omega}_2, \dot{\omega}_3$

5. Solve those equations (if possible) to obtain $\omega_1(t), \omega_2(t), \omega_3(t)$. This give you the time-history of the body's rotation axis $\vec{\omega}$.

6. Now solve for the body's changing orientation, i.e., determine the timehistory of the body's principal axes $\hat{\mathbf{x}}_i(t)$ which evolve according to

$$\frac{d\mathbf{\hat{x}}_i}{dt} = \vec{\omega}(t) \times \mathbf{\hat{x}}_i$$

solving this equation completely specifies the body's motion over time.

Good luck...

Example 11.10—A simple application of Euler's Eqns.

What torque must be exerted on the dumbbell in order to maintain this motion, ie, keep $\omega = \text{constant}$?

Fig. 11-11.

1. First choose the orientation of the rotating coordinate system: set $\hat{\mathbf{z}}$ along the length of the rod since $\hat{\mathbf{L}}$ is perpendicular to the rod, let this direction= $\hat{\mathbf{y}}$ and $\hat{\mathbf{x}}$ is chosen to complete this right-handed coordinate system.

2. From the diagram, $\vec{\omega} = \omega \sin \alpha \hat{\mathbf{y}} + \omega \cos \alpha \hat{\mathbf{z}}$ so $\omega_1 = 0$, $\omega_2 = \omega \sin \alpha$, and $\omega_3 = \omega \cos \alpha$

The torque $\mathbf{N} = N_x \mathbf{\hat{x}} + N_y \mathbf{\hat{y}} + N_z \mathbf{\hat{z}}$ is to be determined.

3. Calculate $\{I\}$:

Use
$$I_{ij} = \sum_{\alpha} m_{\alpha} (\delta_{ij} \sum_{k} x_{\alpha,k}^2 - x_{\alpha,i} x_{\alpha,j})$$
 to show that

$$\{\mathbf{I}\} = \begin{cases} (m_1 + m_2)b^2 & 0 & 0\\ 0 & (m_1 + m_2)b^2 & 0\\ 0 & 0 & 0 \end{cases}$$

evidently our coordinate system *is* this body's principal axes. Yea! The principal moments of inertia are thus $I_1 = I_2 = (m_1 + m_2)b^2$ and $I_3 = 0$.

4. Note that the $\dot{\omega}_i = 0$. Thus Euler's eqns. are:

$$N_x = I_1 \dot{\omega}_1 - (I_2 - I_3) \omega_2 \omega_3 = -(m_1 + m_2) b^2 \omega^2 \sin \alpha \cos \alpha$$

$$N_y = I_2 \dot{\omega}_2 - (I_3 - I_1) \omega_3 \omega_1 = 0$$

$$N_z = I_3 \dot{\omega}_3 - (I_1 - I_2) \omega_1 \omega_2 = 0$$

The torque that keeps the dumbbell rotating about the fixed axis $\vec{\omega}$ is $\mathbf{N} = -(m_1 + m_2)b^2\omega^2 \sin \alpha \cos \alpha \hat{\mathbf{x}}.$

Force-free motion of a symmetric top

The symmetric top has azimuthal symmetry about one axis, assumed here to be the $\hat{\mathbf{z}} = \hat{\mathbf{x}}_3$ axis.

A symmetric top also have $I_1 = I_2 \neq I_3$.

The 'force–free' means torque $\mathbf{N} = 0$.

For this problem, Euler's eqns. become:

$$I_{1}\dot{\omega}_{1} - (I_{1} - I_{3})\omega_{2}\omega_{3} = 0$$

$$I_{1}\dot{\omega}_{2} - (I_{3} - I_{1})\omega_{3}\omega_{1} = 0$$

$$I_{3}\dot{\omega}_{3} = 0$$

where $\vec{\omega} = \omega_1 \hat{\mathbf{x}} + \omega_2 \hat{\mathbf{y}} + \omega_3 \hat{\mathbf{z}}$ is the body's spin-axis vector.

Keep in mind that the $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ axes are the body's principal axes that corotate with the body.

Principal axis rotation corresponds to the case where $\vec{\omega}$ is parallel to any one of the body's principal axes, say, $\vec{\omega} = \omega_2 \hat{\mathbf{y}}$. How does that body's spin-axis $\vec{\omega}$ evolve over time?

Non-principal axis rotation is the more interesting case where $\vec{\omega} = \omega_1 \hat{\mathbf{x}} + \omega_2 \hat{\mathbf{y}} + \omega_3 \hat{\mathbf{z}}$ where at least two of the ω_i are nonzero.

Note that $\dot{\omega}_3 = 0$ so $\omega_3 = \text{constant}$.

Then

$$\dot{\omega}_1 = -\left(\frac{I_3 - I_1}{I_1}\omega_3\right)\omega_2 = -\Omega\omega_2$$
$$\dot{\omega}_2 = +\left(\frac{I_3 - I_1}{I_1}\omega_3\right)\omega_1 = +\Omega\omega_1$$
where $\Omega \equiv \frac{I_3 - I_1}{I_1}\omega_3 = \text{constant}$

Solving these coupled equations will give you the time–history of the top's spin–axis $\vec{\omega}$.

To solve, set

$$\eta(t) \equiv \omega_1(t) + i\omega_2(t)$$

so $\dot{\eta} = \dot{\omega}_1 + i\dot{\omega}_2$
$$= -\Omega\omega_2 + i\Omega\omega_1$$

or $\dot{\eta} = i\Omega\eta$
so $\eta(t) = Ae^{i\Omega t}$
$$= A\cos\Omega t + iA\sin\Omega t$$

$$= \omega_1 + i\omega_2$$

$$\Rightarrow \quad \omega_1(t) = A\cos\Omega t$$

$$\omega_2(t) = A\sin\Omega t$$

while ω_3 = constant

Fig. 11-12.

Note that ω_1 and ω_2 are the projections of the $\vec{\omega}$ axis onto the $\hat{\mathbf{x}}-\hat{\mathbf{y}}$ plane, which traces a circle around the $\hat{\mathbf{z}}$ axis with angular velocity Ω .

Evidently the spin–axis *precesses* about the body's symmetry axis $\hat{\mathbf{z}}$ when $\vec{\omega}$ is *not* aligned with one of the body's principal axes.

An observer who co–rotates with the top will see this precessing spin–axis vector $\vec{\omega}$ sweep out a cone, called the *body cone*.

What does the observer in the fixed reference frame see?

First note that the system's total energy is pure rotational:

$$E = T_{rot} = \frac{1}{2}\vec{\omega} \cdot \mathbf{L} = \frac{1}{2}\omega L \cos \phi$$

where ϕ = angle between $\vec{\omega}$ and angular momentum \mathbf{L}

Since *E* is constant for this conservative system, and **L** is constant for this torque–free system, $\omega \cos \phi = \text{constant} \Rightarrow \text{the projection of } \vec{\omega} \text{ onto } \mathbf{L} \text{ is constant.}$

Fig. 11-13.

The observer in the fixed reference frame thus sees the spin–axis vector $\vec{\omega}$ precess about the angular momentum vector **L**, which causes $\vec{\omega}$ to sweep out a *space cone*.

Note that the spin axis vector $\vec{\omega}$ always points at the spot where the two cones touch.

This is because the three vectors \mathbf{L} , $\vec{\omega}$, and $\mathbf{\hat{x}}_3$ all inhabit the same plane.

Show that \mathbf{L} , $\vec{\omega}$, and $\mathbf{\hat{x}}_3$ are coplanar:

Proof:

If this is the case, then $\vec{\omega} \times \hat{\mathbf{x}}_3$ is normal to $\vec{\omega}$, and $\hat{\mathbf{x}}_3$, and thus $\mathbf{L} \cdot (\vec{\omega} \times \hat{\mathbf{x}}_3)$ must be zero.

Check:

$$\vec{\omega} \times \hat{\mathbf{x}}_3 = (\omega_1 \hat{\mathbf{x}}_1 + \omega_2 \hat{\mathbf{x}}_2 + \omega_3 \hat{\mathbf{x}}_3) \times \hat{\mathbf{x}}_3$$
$$= -\omega_1 \hat{\mathbf{x}}_2 + \omega_2 \hat{\mathbf{x}}_1$$
and since $\mathbf{L} = \{\mathbf{I}\} \cdot \vec{\omega} = I_1 \omega_1 \hat{\mathbf{x}}_1 + I_2 \omega_2 \hat{\mathbf{x}}_2 + I_3 \omega_3 \hat{\mathbf{x}}_3$ then $\mathbf{L} \cdot (\vec{\omega} \times \hat{\mathbf{x}}_3) = I_1 \omega_1 \omega_2 - I_2 \omega_2 \omega_1 = 0$

since a symmetric top has $I_1 = I_2$. Thus $\mathbf{L}, \vec{\omega}$, and $\mathbf{\hat{x}}_3$ are always coplanar.

Thus the inertial observer sees both the spin axis $\vec{\omega}$ and the body's symmetry axis $\hat{\mathbf{x}}_3$ precess about the fixed angular momentum vector \mathbf{L} at the same angular rate Ω .