Lecture Notes for PHY 405
 Classical Mechanics

From Thorton \& Marion's Classical Mechanics
Prepared by
Dr. Joseph M. Hahn
Saint Mary's University
Department of Astronomy \& Physics
November 21, 2004

> Problem Set \#6 due Thursday December 1 at the start of class late homework will not be accepted
text problems 10-8, 10-18, 11-2, 11-7, 11-13, 11-20, 11-31

> Final Exam
> Tuesday December 6
> 10am-1pm in MM310
> (note the room change!)

Chapter 11: Dynamics of Rigid Bodies

rigid body $=$ a collection of particles whose relative positions are fixed.

We will ignore the microscopic thermal vibrations occurring among a 'rigid' body's atoms.

The inertia tensor

Consider a rigid body that is composed of N particles.
Give each particle an index $\alpha=1 \ldots N$.
The total mass is $M=\sum_{\alpha} m_{\alpha}$.
This body can be translating as well as rotating.
Place your moving/rotating origin on the body's CoM:

Fig. 10-1.
the CoM is at $\quad \mathbf{R}=\frac{1}{M} \sum_{\alpha} m_{\alpha} \mathbf{r}^{\prime}{ }_{\alpha}$ where $\mathbf{r}_{\alpha}^{\prime}=\mathbf{R}+\mathbf{r}_{\alpha}=\alpha$'s position wrt' fixed origin note that this implies $\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}=0$
Particle α has velocity $\mathbf{v}_{f, \alpha}=d \mathbf{r}^{\prime}{ }_{\alpha} / d t$ relative to the fixed origin, and velocity $\mathbf{v}_{r, \alpha}=d \mathbf{r}_{\alpha} / d t$ in the reference frame that rotates about axis $\vec{\omega}$.

Then according to Eq. 10.17 (or page 6 of Chap. 10 notes):

$$
\mathbf{v}_{f, \alpha}=\mathbf{V}+\mathbf{v}_{r, \alpha}+\vec{\omega} \times \mathbf{r}_{\alpha}=\alpha \text { 's velocity measured wrt' fixed origin }
$$

and $\mathbf{V}=d \mathbf{R} / d t=$ velocity of the moving origin relative to the fixed origin.
What is $\mathbf{v}_{r, \alpha}$ for the the particles that make up this rigid body?

Thus $\mathbf{v}_{\alpha}=\mathbf{V}+\vec{\omega} \times \mathbf{r}_{\alpha}$ after dropping the f subscript

$$
\text { and } \quad T_{\alpha}=\frac{1}{2} m_{\alpha} \mathbf{v}_{\alpha}^{2}=\frac{1}{2} m_{\alpha}\left(\mathbf{V}+\vec{\omega} \times \mathbf{r}_{\alpha}\right)^{2} \quad \text { is the particle's KE }
$$

so $\quad T=\sum_{\alpha=1}^{N} T_{\alpha}$ the system's total KE is

$$
\begin{aligned}
& =\frac{1}{2} M \mathbf{V}^{2}+\sum_{\alpha} m_{\alpha} \mathbf{V} \cdot\left(\vec{\omega} \times \mathbf{r}_{\alpha}\right)+\frac{1}{2} \sum_{\alpha} m_{\alpha}\left(\vec{\omega} \times \mathbf{r}_{\alpha}\right)^{2} \\
& =\frac{1}{2} M \mathbf{V}^{2}+\mathbf{V} \cdot\left(\vec{\omega} \times \sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}\right)+\frac{1}{2} \sum_{\alpha} m_{\alpha}\left(\vec{\omega} \times \mathbf{r}_{\alpha}\right)^{2}
\end{aligned}
$$

where $M=\sum_{\alpha} m_{\alpha}=$ the system's total mass.
Recall that $\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}=0$, so
thus $\quad T=T_{\text {trans }}+T_{\text {rot }}$
where $\quad T_{\text {trans }}=\frac{1}{2} M \mathrm{~V}^{2}=\mathrm{KE}$ due to system's translation

$$
\text { and } \quad T_{\text {rot }}=\frac{1}{2} \sum_{\alpha} m_{\alpha}\left(\vec{\omega} \times \mathbf{r}_{\alpha}\right)^{2}=\text { KE due to system's rotation }
$$

Now focus on $T_{\text {rot }}$, and note that $(\mathbf{A} \times \mathbf{B})^{2}=A^{2} B^{2}-(\mathbf{A} \cdot \mathbf{B})^{2} \leftarrow$ see text page 28 for proof.

Thus

$$
T_{r o t}=\frac{1}{2} \sum_{\alpha} m_{\alpha}\left[\omega^{2} r_{\alpha}^{2}-\left(\vec{\omega} \cdot \mathbf{r}_{\alpha}\right)^{2}\right]
$$

In Cartesian coordinates,

$$
\begin{aligned}
\vec{\omega} & =\omega_{x} \hat{\mathbf{x}}+\omega_{y} \hat{\mathbf{y}}+\omega_{z} \hat{\mathbf{z}} \\
\text { so } \quad \omega^{2} & =\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2} \equiv \sum_{i=1}^{3} \omega_{i}^{2} \\
\text { and } \quad \mathbf{r}_{\alpha} & =\sum_{i=1}^{3} x_{\alpha, i} \hat{\mathbf{x}}_{i} \\
\text { so } \quad \vec{\omega} \cdot \mathbf{r}_{\alpha} & =\sum_{i=1}^{3} \omega_{i} x_{\alpha, i}
\end{aligned}
$$

Thus
$T_{\text {rot }}=\frac{1}{2} \sum_{\alpha} m_{\alpha}\left[\left(\sum_{i=1}^{3} \omega_{i}^{2}\right)\left(\sum_{k=1}^{3} x_{\alpha, k}^{2}\right)-\left(\sum_{i=1}^{3} \omega_{i} x_{\alpha, i}\right)\left(\sum_{j=1}^{3} \omega_{j} x_{\alpha, j}\right)\right]$
We can also write

$$
\begin{aligned}
\omega_{i} & =\sum_{j=1}^{3} \omega_{j} \delta_{i, j} \\
\text { where } \quad \delta_{i, j} & = \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
\text { so } \quad \omega_{i}^{2} & =\omega_{i} \sum_{j=1}^{3} \omega_{j} \delta_{i, j}=\sum_{j=1}^{3} \omega_{i} \omega_{j} \delta_{i, j}
\end{aligned}
$$

and also note that $\left(\sum_{i} a_{i}\right)\left(\sum_{i} b_{i}\right)=\sum_{i} \sum_{j} a_{i} b_{i} \equiv \sum_{i, j} a_{i} b_{i}$

$$
\begin{aligned}
& \text { so } \quad T_{\text {rot }}=\frac{1}{2} \sum_{\alpha} m_{\alpha}\left[\sum_{i, j} \omega_{i} \omega_{j} \delta_{i, j}\left(\sum_{k=1}^{3} x_{\alpha, k}^{2}\right)-\sum_{i, j} \omega_{i} \omega_{j} x_{\alpha, i} x_{\alpha, j}\right] \\
& =\frac{1}{2} \sum_{\alpha} m_{\alpha} \sum_{i, j} \omega_{i} \omega_{j}\left[\delta_{i, j} \sum_{k=1}^{3} x_{\alpha, k}^{2}-x_{\alpha, i} x_{\alpha, j}\right] \\
& =\frac{1}{2} \sum_{i, j} \omega_{i} \omega_{j} \sum_{\alpha} m_{\alpha}\left[\delta_{i, j} \sum_{k=1}^{3} x_{\alpha, k}^{2}-x_{\alpha, i} x_{\alpha, j}\right] \\
& \equiv \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} I_{i, j} \omega_{i} \omega_{j} \\
& \text { where } \quad I_{i, j} \equiv \sum_{\alpha} m_{\alpha}\left[\delta_{i, j} \sum_{k=1}^{3} x_{\alpha, k}^{2}-x_{\alpha, i} x_{\alpha, j}\right]
\end{aligned}
$$

are the 9 elements of a 3×3 matrix called the inertial tensor $\{\mathbf{I}\}$.

Note that the $I_{i, j}$ has units of mass \times length ${ }^{2}$.

Since $x_{\alpha, 1}=x_{\alpha}, x_{\alpha, 2}=y_{\alpha}, x_{\alpha, 3}=z_{\alpha}$,

$$
\{\mathbf{I}\}=\left\{\begin{array}{rrr}
\sum_{\alpha} m_{\alpha}\left(y_{\alpha}^{2}+z_{\alpha}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha} y_{\alpha} & -\sum_{\alpha} m_{\alpha} x_{\alpha} z_{\alpha} \\
-\sum_{\alpha} m_{\alpha} y_{\alpha} x_{\alpha} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha}^{2}+z_{\alpha}^{2}\right) & -\sum_{\alpha} m_{\alpha} y_{\alpha} z_{\alpha} \\
-\sum_{\alpha} m_{\alpha} z_{\alpha} x_{\alpha} & -\sum_{\alpha} m_{\alpha} z_{\alpha} y_{\alpha} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha}^{2}+y_{\alpha}^{2}\right)
\end{array}\right\}
$$

Be sure to write your matrix elements $I_{i, j}$ consistently;
here, the i index increments down along a column while the j index increments across a row.

Also note that $I_{i, j}=I_{j, i} \Rightarrow$ the inertia tensor is symmetric.

The diagonal elements $I_{i, i}=$ the moments of inertia while the off-diagonal elements $I_{i \neq j}=$ the products of inertia

For a continuous body, $m_{\alpha} \rightarrow d m=\rho(\mathbf{r}) d V$

$$
\begin{aligned}
d I_{i, j} & \rightarrow\left(\delta_{i, j} \sum_{k=1}^{3} x_{k}^{2}-x_{i} x_{j}\right) d m \\
& =\text { the contribution to } I_{i, j} \text { due to mass element } d m=\rho d V \\
\text { thus } \quad I_{i, j} & =\int_{V} d I_{i, j}=\int_{V} \rho(\mathbf{r})\left(\delta_{i, j} \sum_{k=1}^{3} x_{k}^{2}-x_{i} x_{j}\right) d V
\end{aligned}
$$

where the integration proceeds over the system's volume V.

Example 11.3

Calculate $\{\mathbf{I}\}$ for a cube of mass M and width b and uniform density $\rho=$ M / b^{3}. Place the origin at one corner of the cube.

Fig. 11-3.

$$
\begin{aligned}
I_{1,1} & =\rho \int_{0}^{b} d x \int_{0}^{b} d y \int_{0}^{b} d z\left(x^{2}+y^{2}+z^{2}-x^{2}\right) \\
& =\rho b \int_{0}^{b} d y\left(y^{2} b+\frac{1}{3} b^{3}\right) \\
& =\rho b\left(\frac{1}{3} b^{4}+\frac{1}{3} b^{4}\right) \\
& =\frac{2}{3} \rho b^{5}=\frac{2}{3} M b^{2}
\end{aligned}
$$

It is straightforward to show that the other diagonal elements are $I_{2,2}=I_{3,3}=I_{1,1}$.

The off-diagonal elements are similarly identical:

$$
\begin{aligned}
I_{1,2} & =-\rho \int_{0}^{b} d x \int_{0}^{b} d y \int_{0}^{b} d z \cdot x y \\
& =-\rho\left(\frac{1}{2} b^{2}\right)\left(\frac{1}{2} b^{2}\right) b=-\frac{1}{4} \rho b^{5}=-\frac{1}{4} M b^{2} \\
& =I_{i \neq j}
\end{aligned}
$$

Thus this cube has an inertia tensor

$$
\{\mathbf{I}\}=M b^{2}\left\{\begin{array}{rrr}
2 / 3 & -1 / 4 & -1 / 4 \\
-1 / 4 & 2 / 3 & -1 / 4 \\
-1 / 4 & -1 / 4 & 2 / 3
\end{array}\right\}
$$

Principal Axes of Inertia

The axes $\hat{\mathbf{x}}_{i}$ that diagonalizes a body's inertia tensor $\{\mathbf{I}\}$ is called the principal axes of inertia.

In this case

$$
\begin{aligned}
& I_{i, j}=I_{i} \delta_{i, j} \\
& \text { so } \quad \begin{aligned}
T_{\text {rot }} & =\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} I_{i, j} \omega_{i} \omega_{j}=\text { rotational } \mathrm{KE} \\
& =\frac{1}{2} \sum_{i=1}^{3} I_{i} \omega_{i}^{2}
\end{aligned}, l \text {. }
\end{aligned}
$$

where the three I_{i} are the body's principal moments of inertia.
If this body is also rotating about one of its principal axis, say, the $\hat{\mathbf{z}}$, then $\vec{\omega}=\omega \hat{\mathbf{z}}$ and

$$
T_{\text {rot }}=\frac{1}{2} I_{z} \omega^{2}
$$

which is the familiar formula for the rotational KE in terms of inertia I_{z} found in the elementary textbooks.
\Rightarrow those formulae with $T_{\text {rot }}=\frac{1}{2} I \omega^{2}$ are only valid when the rotation axis $\vec{\omega}$ lies along one of the body's three principal axes.

The procedure for determining the orientation of a body's principal axes of inertia is given in Section 11.5.

Angular Momentum

The system's total angular momentum relative to the moving/rotating origin $\mathcal{O}_{\text {rot }}$ is

$$
\mathbf{L}=\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{v}_{\alpha}
$$

where \mathbf{r}_{α} and \mathbf{v}_{α} are α^{\prime} 'a position and velocity relative to $\mathcal{O}_{\text {rot }}$.

Recall that $\mathbf{v}_{\alpha}=\vec{\omega} \times \mathbf{r}_{\alpha}$ for this rigid body (Eqn. 10.17), so

$$
\mathbf{L}=\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} \times\left(\vec{\omega} \times \mathbf{r}_{\alpha}\right)
$$

Chapter 1 and problem 1-22 show that

$$
\begin{aligned}
\mathbf{A} \times(\mathbf{B} \times \mathbf{A}) & =A^{2} \mathbf{B}-(\mathbf{A} \cdot \mathbf{B}) \mathbf{A} \\
\text { so } \quad \mathbf{L} & =\sum_{\alpha} m_{\alpha}\left[r_{\alpha}^{2} \vec{\omega}-\left(\mathbf{r}_{\alpha} \cdot \vec{\omega}\right) \mathbf{r}_{\alpha}\right]
\end{aligned}
$$

and the $i^{\text {th }}$ component of \mathbf{L} is

$$
L_{i}=\sum_{\alpha} m_{\alpha}\left[r_{\alpha}^{2} \omega_{i}-\left(\mathbf{r}_{\alpha} \cdot \vec{\omega}\right) x_{\alpha, i}\right]
$$

And again use

$$
r_{\alpha}^{2}=\sum_{k=1}^{3} x_{\alpha, k}^{2} \quad \mathbf{r}_{\alpha} \cdot \vec{\omega}=\sum_{j=1}^{3} x_{\alpha, j} \omega_{j} \quad \omega_{i}=\sum_{j=1}^{3} \omega_{j} \delta_{i, j}
$$

So

$$
\begin{aligned}
L_{i} & =\sum_{\alpha} m_{\alpha}\left(\sum_{k=1}^{3} x_{\alpha, k}^{2} \sum_{j=1}^{3} \omega_{j} \delta_{i, j}-\sum_{j=1}^{3} x_{\alpha, j} \omega_{j} x_{\alpha, i}\right) \\
& =\sum_{j=1}^{3} \omega_{j} \sum_{\alpha} m_{\alpha}\left(\delta_{i, j} \sum_{k=1}^{3} x_{\alpha, k}^{2}-x_{\alpha, i} x_{\alpha, j}\right) \\
& =\sum_{j=1}^{3} I_{i j} \omega_{j}
\end{aligned}
$$

where the $I_{i, j}$ are the elements of the inertial tensor $\{\mathbf{I}\}$.
Note that

$$
\begin{aligned}
\mathbf{L} & =\sum_{i=1}^{3} L_{i} \hat{\mathbf{x}}_{i}=\sum_{i=1}^{3} \sum_{j=1}^{3} I_{i j} \omega_{j} \hat{\mathbf{x}}_{i} \\
& =\{\mathbf{I}\} \cdot \vec{\omega}
\end{aligned}
$$

Lets confirm this last step by explicitly doing the matrix multiplication:

$$
\begin{aligned}
\mathbf{L} & =\left(\begin{array}{l}
L_{1} \\
L_{2} \\
L_{3}
\end{array}\right)=\{\mathbf{I}\} \cdot \vec{\omega}=\left(\begin{array}{lll}
I_{11} & I_{12} & I_{13} \\
I_{21} & I_{22} & I_{23} \\
I_{31} & I_{32} & I_{33}
\end{array}\right)\left(\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right) \\
& =\left(\begin{array}{c}
I_{11} \omega_{1}+I_{12} \omega_{2}+I_{13} \omega_{3} \\
I_{21} \omega_{1}+I_{22} \omega_{2}+I_{23} \omega_{3} \\
I_{31} \omega_{1}+I_{32} \omega_{2}+I_{33} \omega_{3}
\end{array}\right)=\left(\begin{array}{l}
\sum_{j} I_{1 j} \omega_{j} \\
\sum_{j} I_{2 j} \omega_{j} \\
\sum_{j} I_{3 j} \omega_{j}
\end{array}\right)
\end{aligned}
$$

which confirms $\mathbf{L}=\{\mathbf{I}\} \cdot \vec{\omega}$.

Evidently the inertia tensor relates the system's angular momentum \mathbf{L} to its spin axis $\vec{\omega}$.

Now examine

$$
\begin{aligned}
\sum_{i=1}^{3} \frac{1}{2} \omega_{i} L_{i} & =\frac{1}{2} \vec{\omega} \cdot \mathbf{L}=\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} I_{i j} \omega_{i} \omega_{j} \\
& =T_{\text {rot }}=\text { the body's KE due to its rotation } \\
\Rightarrow T_{\text {rot }} & =\frac{1}{2} \vec{\omega} \cdot \mathbf{L}=\frac{1}{2} \vec{\omega} \cdot\{\mathbf{I}\} \cdot \vec{\omega}
\end{aligned}
$$

Note that the RHS is a scalar (as is should) since
$\{\mathbf{I}\} \cdot \vec{\omega}$ is a vector, and a vector \cdot vector $=$ scalar.

Chapter 9 showed that if an external torque \mathbf{N} is applied to the body, then

$$
\mathbf{N}=\frac{d \mathbf{L}}{d t}=\{\mathbf{I}\} \cdot \dot{\vec{\omega}}
$$

since $\{\mathbf{I}\}$ is a constant.

We now have several methods available for obtaining the equation of motion: Newton's Laws,
Lagrange equations, Hamilton's equation, and $\mathbf{N}=\{\mathbf{I}\} \cdot \dot{\vec{\omega}}$ (which follows from Newton's Laws)
the latter equation is usually quite handy for rotating rigid bodies.

Example 11.4

A plane pendulum with two masses: m_{1} lies at one end of the rod of length b, while m_{2} is at the midpoint. What is the frequency of small oscillations?

Fig. 11-5.

This solution will use $\mathbf{N}=\{\mathbf{I}\} \cdot \dot{\vec{\omega}}$.
Note that $\vec{\omega}=\dot{\theta} \hat{\mathbf{z}}$ which point out of the page, so $\dot{\vec{\omega}}=\ddot{\theta} \hat{\mathbf{z}}$.

The inertia tensor has elements

$$
I_{i j}=\sum_{\alpha} m_{\alpha}\left(\delta_{i, j} \sum_{k=1}^{3} x_{\alpha, k}^{2}-x_{\alpha, i} x_{\alpha, j}\right)
$$

so $\quad I_{11}=0$

$$
\begin{aligned}
I_{22} & =m_{1}\left(b^{2}-0\right)+m_{2}\left[\left(\frac{b}{2}\right)^{2}-0\right]=\left(m_{1}+\frac{1}{4} m_{2}\right) b^{2} \\
& =I_{33} \\
I_{12} & =-m_{1} b \cdot 0-m_{2}\left(\frac{b}{2}\right) \cdot 0=0
\end{aligned}
$$

likewise all $I_{i \neq j}=0$
Thus

$$
\{\mathbf{I}\}=\left\{\begin{array}{ccc}
0 & 0 & 0 \\
0 & \left(m_{1}+\frac{1}{4} m_{2}\right) b^{2} & 0 \\
0 & 0 & \left(m_{1}+\frac{1}{4} m_{2}\right) b^{2}
\end{array}\right\}
$$

The torque on the masses due to gravity is

$$
\begin{aligned}
\mathbf{N} & =\sum_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{F}_{\alpha} \\
& =\sum_{\alpha} \mathbf{r}_{\alpha} \times m_{\alpha} \mathbf{g}_{\alpha} \\
\text { where } \mathbf{g} & =g \cos \theta \hat{\mathbf{x}}-g \sin \theta \hat{\mathbf{y}} \\
\text { and } \quad \mathbf{r}_{\alpha} & =r_{\alpha} \hat{\mathbf{x}} \\
\text { so } \quad \mathbf{r}_{\alpha} \times \mathbf{g} & =-r_{\alpha} g \sin \theta(\hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}}) \\
\text { and } \mathbf{N} & =-m_{1} b g \sin \theta \hat{\mathbf{z}}-m_{2} \frac{b}{2} g \sin \theta \hat{\mathbf{z}} \\
& =-\left(m_{1}+\frac{1}{2} m_{2}\right) b g \sin \theta \hat{\mathbf{z}}
\end{aligned}
$$

Since $\mathbf{N}=\{\mathbf{I}\} \cdot \dot{\vec{\omega}}$,

$$
\left.\begin{array}{rl}
\left(\begin{array}{rl}
0 \\
0 \\
-\left(m_{1}+\frac{1}{2} m_{2}\right) b g \sin \theta
\end{array}\right) & =\left\{\begin{array}{cc}
0 & 0 \\
0 & \left(m_{1}+\frac{1}{4} m_{2}\right) b^{2} \\
0 & 0
\end{array}\right) 0 \\
\Rightarrow-\left(m_{1}+\frac{1}{2} m_{2}\right) b g \sin \theta & \left.=\left(m_{1}+\frac{1}{4} m_{2}\right) b^{2} \ddot{\theta}\right) b^{2}
\end{array}\right\} \cdot\left(\begin{array}{l}
0 \\
0 \\
\ddot{\theta}
\end{array}\right)
$$

is the frequency of small oscillations.

Note that you could also have solved this problem using the Lagrange equations.

Since $\{\mathbf{I}\}$ is diagonal, our coordinate system is evidently the pendulum's principal axes. In this case, the system's Lagrangian L is

$$
\begin{aligned}
L & =T+U \\
\text { where } \quad T & =T_{\text {rot }}=\frac{1}{2} \sum_{i=1}^{3} I_{i} \omega_{i}^{2} \\
\text { where } I_{i} & =\text { the diagonal elements } \\
\text { so } \quad T & =\frac{1}{2} I_{33} \omega^{2}=\frac{1}{2}\left(m_{1}+\frac{1}{4} m_{2}\right) b^{2} \dot{\theta}^{2} \\
\text { and } \quad U & =-m_{1} g b \cos \theta-m_{2} g \frac{b}{2} \cos \theta
\end{aligned}
$$

The resulting Lagrange will lead to the same equation of motion, namely $\ddot{\theta} \simeq \omega_{0}^{2} \theta$.

Euler's equations for a rigid body

The following will derive Euler's equations for a rigid body, which describe how a rigid body's orientation is altered when a torque is applied.

Recall that a rotating rigid body has angular momenta components

$$
L_{i}=\sum_{j=1}^{3} I_{i j} \omega_{j} \quad \text { (see Eq. 11.20a) }
$$

so $\quad \mathbf{L}=\sum_{i=1}^{3} L_{i} \hat{\mathbf{x}}_{i}=\sum_{i=1}^{3} \sum_{j=1}^{3} I_{i j} \omega_{j} \hat{\mathbf{x}}_{i}=$ total angular momentum vector
Keep in mind that the $\hat{\mathbf{x}}_{i}$ are the axes in the rotating coordinate system.
Now exert a external torque $\mathbf{N}=\dot{\mathbf{L}}$ on the body.
And as is usual, all time derivatives are to be computed in the fixed reference frame. Thus

$$
\begin{aligned}
\mathbf{N} & =\frac{d}{d t} \sum_{i j} I_{i j} \omega_{j} \hat{\mathbf{x}}_{i} \\
& =\sum_{i j} I_{i j}\left[\dot{\omega}_{j} \hat{\mathbf{x}}_{i}+\omega_{j}\left(\frac{d \hat{\mathbf{x}}_{i}}{d t}\right)_{\text {fixed }}\right]
\end{aligned}
$$

Recall that for any vector \mathbf{Q},

$$
\begin{aligned}
\quad\left(\frac{d \mathbf{Q}}{d t}\right)_{\text {fixed }} & =\left(\frac{d \mathbf{Q}}{d t}\right)_{\text {rotating }}+\vec{\omega} \times \mathbf{Q} \\
\text { so } \quad\left(\frac{d \hat{\mathbf{x}}_{i}}{d t}\right)_{\text {fixed }} & =\vec{\omega} \times \hat{\mathbf{x}}_{i}
\end{aligned}
$$

Thus

$$
\mathbf{N}=\sum_{i j} I_{i j}\left(\dot{\omega}_{j} \hat{\mathbf{x}}_{i}+\omega_{j} \vec{\omega} \times \hat{\mathbf{x}}_{i}\right)
$$

Now lets choose our coordinate system to be the body's principal axes, so $I_{i j}=I_{i} \delta_{i j}$ and

$$
\begin{aligned}
\mathbf{N} & =\sum_{i} I_{i}\left(\dot{\omega}_{i} \hat{\mathbf{x}}_{i}+\omega_{i} \vec{\omega} \times \hat{\mathbf{x}}_{i}\right) \\
& =I_{1} \dot{\omega}_{1} \hat{\mathbf{x}}+I_{2} \dot{\omega}_{2} \hat{\mathbf{y}}+I_{3} \dot{\omega}_{3} \hat{\mathbf{z}}+I_{1} \omega_{1} \vec{\omega} \times \hat{\mathbf{x}}+I_{2} \omega_{2} \vec{\omega} \times \hat{\mathbf{y}}+I_{3} \omega_{3} \vec{\omega} \times \hat{\mathbf{z}}
\end{aligned}
$$

Do the cross products. First note that

$$
\begin{aligned}
\hat{\mathbf{x}} \times \hat{\mathbf{y}} & =\hat{\mathbf{z}} \\
\hat{\mathbf{y}} \times \hat{\mathbf{z}} & =\hat{\mathbf{x}} \\
\hat{\mathbf{z}} \times \hat{\mathbf{x}} & =\hat{\mathbf{y}} \\
\text { and } \vec{\omega} & =\omega_{1} \hat{\mathbf{x}}+\omega_{2} \hat{\mathbf{y}}+\omega_{3} \hat{\mathbf{z}}=\text { the body's spin axis } \\
\text { so } \vec{\omega} \times \hat{\mathbf{x}} & =\omega_{2} \hat{\mathbf{y}} \times \hat{\mathbf{x}}+\omega_{3} \hat{\mathbf{z}} \times \hat{\mathbf{x}}=-\omega_{2} \hat{\mathbf{z}}+\omega_{3} \hat{\mathbf{y}} \\
\vec{\omega} \times \hat{\mathbf{y}} & =\omega_{1} \hat{\mathbf{z}}-\omega_{3} \hat{\mathbf{x}} \\
\vec{\omega} \times \hat{\mathbf{z}} & =-\omega_{1} \hat{\mathbf{y}}+\omega_{2} \hat{\mathbf{x}}
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\mathbf{N} & =\hat{\mathbf{x}}\left(I_{1} \dot{\omega}_{1}-I_{2} \omega_{2} \omega_{3}+I_{3} \omega_{3} \omega_{2}\right)+\hat{\mathbf{y}}\left(I_{2} \dot{\omega}_{2}+I_{1} \omega_{1} \omega_{3}-I_{3} \omega_{3} \omega_{1}\right) \\
& +\hat{\mathbf{z}}\left(I_{3} \dot{\omega}_{3}-I_{1} \omega_{1} \omega_{2}+I_{2} \omega_{2} \omega_{1}\right)
\end{aligned}
$$

The three components of this equation,

$$
\begin{aligned}
& N_{x}=I_{1} \dot{\omega}_{1}-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3} \\
& N_{y}=I_{2} \dot{\omega}_{2}-\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1} \\
& N_{z}=I_{3} \dot{\omega}_{3}-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}
\end{aligned}
$$

are known as Euler's equations, which relate the torque N_{i} to the time-rate of change $\dot{\omega}_{i}$ in the rigid body's orientation.

How to use Euler's eqns.

Suppose you want to know what the torque \mathbf{N} does to a rigid body.
In other words, how does this torque alter the body's spin axis $\vec{\omega}$ and re orient its principal axes?

1. Choose the orientation of rotating coordinate system at some instant of time t_{0}.
2. Make note of $\vec{\omega}$ and \mathbf{N} at time $t=t_{0}$
3. Calculate $\{\mathbf{I}\}$ and use the method described in Section 11.5 do determine the body's principal moments of inertia I_{1}, I_{2}, I_{3} and the orientation of its principal axes $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ at time t_{0}
4. Use Euler's Equations to obtain $\dot{\omega}_{1}, \dot{\omega}_{2}, \dot{\omega}_{3}$
5. Solve those equations (if possible) to obtain $\omega_{1}(t), \omega_{2}(t), \omega_{3}(t)$.

This give you the time-history of the body's rotation axis $\vec{\omega}$.
6. Now solve for the body's changing orientation, ie, determine the timehistory of the body's principal axes $\hat{\mathbf{x}}_{i}(t)$ which evolve according to

$$
\frac{d \hat{\mathbf{x}}_{i}}{d t}=\vec{\omega}(t) \times \hat{\mathbf{x}}_{i}
$$

solving this equation completely specifies the body's motion over time.

Good luck...

Example 11.10-A simple application of Euler's Eqns.

What torque must be exerted on the dumbbell in order to maintain this motion, ie, keep $\omega=$ constant?

Fig. 11-11.

1. First choose the orientation of the rotating coordinate system:
set $\hat{\mathbf{z}}$ along the length of the rod since $\hat{\mathbf{L}}$ is perpendicular to the rod, let this direction $=\hat{\mathbf{y}}$ and $\hat{\mathbf{x}}$ is chosen to complete this right-handed coordinate system.
2. From the diagram, $\vec{\omega}=\omega \sin \alpha \hat{\mathbf{y}}+\omega \cos \alpha \hat{\mathbf{z}}$
so $\omega_{1}=0, \omega_{2}=\omega \sin \alpha$, and $\omega_{3}=\omega \cos \alpha$

The torque $\mathbf{N}=N_{x} \hat{\mathbf{x}}+N_{y} \hat{\mathbf{y}}+N_{z} \hat{\mathbf{z}}$ is to be determined.
3. Calculate $\{\mathbf{I}\}$:

Use $I_{i j}=\sum_{\alpha} m_{\alpha}\left(\delta_{i j} \sum_{k} x_{\alpha, k}^{2}-x_{\alpha, i} x_{\alpha, j}\right)$ to show that

$$
\{\mathbf{I}\}=\left\{\begin{array}{ccc}
\left(m_{1}+m_{2}\right) b^{2} & 0 & 0 \\
0 & \left(m_{1}+m_{2}\right) b^{2} & 0 \\
0 & 0 & 0
\end{array}\right\}
$$

evidently our coordinate system is this body's principal axes. Yea!
The principal moments of inertia are thus $I_{1}=I_{2}=\left(m_{1}+m_{2}\right) b^{2}$ and $I_{3}=0$.
4. Note that the $\dot{\omega}_{i}=0$. Thus Euler's eqns. are:

$$
\begin{aligned}
& N_{x}=I_{1} \dot{\omega}_{1}-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}=-\left(m_{1}+m_{2}\right) b^{2} \omega^{2} \sin \alpha \cos \alpha \\
& N_{y}=I_{2} \dot{\omega}_{2}-\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}=0 \\
& N_{z}=I_{3} \dot{\omega}_{3}-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}=0
\end{aligned}
$$

The torque that keeps the dumbbell rotating about the fixed axis $\vec{\omega}$ is $\mathbf{N}=-\left(m_{1}+m_{2}\right) b^{2} \omega^{2} \sin \alpha \cos \alpha \hat{\mathbf{x}}$.

The symmetric top has azimuthal symmetry about one axis, assumed here to be the $\hat{\mathbf{z}}=\hat{\mathbf{x}}_{3}$ axis.

A symmetric top also have $I_{1}=I_{2} \neq I_{3}$.

The 'force-free' means torque $\mathbf{N}=0$.

For this problem, Euler's eqns. become:

$$
\begin{aligned}
I_{1} \dot{\omega}_{1}-\left(I_{1}-I_{3}\right) \omega_{2} \omega_{3} & =0 \\
I_{1} \dot{\omega}_{2}-\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1} & =0 \\
I_{3} \dot{\omega}_{3} & =0
\end{aligned}
$$

where $\vec{\omega}=\omega_{1} \hat{\mathbf{x}}+\omega_{2} \hat{\mathbf{y}}+\omega_{3} \hat{\mathbf{z}}$ is the body's spin-axis vector.

Keep in mind that the $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ axes are the body's principal axes that corotate with the body.

Principal axis rotation corresponds to the case where $\vec{\omega}$ is parallel to any one of the body's principal axes, say, $\vec{\omega}=\omega_{2} \hat{\mathbf{y}}$.
How does that body's spin-axis $\vec{\omega}$ evolve over time?

Non-principal axis rotation is the more interesting case where $\vec{\omega}=\omega_{1} \hat{\mathbf{x}}+\omega_{2} \hat{\mathbf{y}}+\omega_{3} \hat{\mathbf{z}}$ where at least two of the ω_{i} are nonzero.

Note that $\dot{\omega}_{3}=0$ so $\omega_{3}=$ constant.

Then

$$
\begin{aligned}
\dot{\omega}_{1} & =-\left(\frac{I_{3}-I_{1}}{I_{1}} \omega_{3}\right) \omega_{2}=-\Omega \omega_{2} \\
\dot{\omega}_{2} & =+\left(\frac{I_{3}-I_{1}}{I_{1}} \omega_{3}\right) \omega_{1}=+\Omega \omega_{1} \\
\text { where } \Omega & \equiv \frac{I_{3}-I_{1}}{I_{1}} \omega_{3}=\text { constant }
\end{aligned}
$$

Solving these coupled equations will give you the time-history of the top's spin-axis $\vec{\omega}$.

To solve, set

$$
\begin{aligned}
\eta(t) & \equiv \omega_{1}(t)+i \omega_{2}(t) \\
\text { so } \quad \dot{\eta} & =\dot{\omega}_{1}+i \dot{\omega}_{2} \\
& =-\Omega \omega_{2}+i \Omega \omega_{1} \\
\text { or } \quad \dot{\eta} & =i \Omega \eta \\
\text { so } \quad \eta(t) & =A e^{i \Omega t} \\
& =A \cos \Omega t+i A \sin \Omega t \\
& =\omega_{1}+i \omega_{2} \\
\Rightarrow \quad \omega_{1}(t) & =A \cos \Omega t \\
\omega_{2}(t) & =A \sin \Omega t \\
\text { while } \quad \omega_{3} & =\text { constant }
\end{aligned}
$$

Fig. 11-12.
Note that ω_{1} and ω_{2} are the projections of the $\vec{\omega}$ axis onto the $\hat{\mathbf{x}}-\hat{\mathbf{y}}$ plane, which traces a circle around the $\hat{\mathbf{z}}$ axis with angular velocity Ω.

Evidently the spin-axis precesses about the body's symmetry axis $\hat{\mathbf{z}}$ when $\vec{\omega}$ is not aligned with one of the body's principal axes.

An observer who co-rotates with the top will see this precessing spin-axis vector $\vec{\omega}$ sweep out a cone, called the body cone.

What does the observer in the fixed reference frame see?
First note that the system's total energy is pure rotational:

$$
E=T_{\text {rot }}=\frac{1}{2} \vec{\omega} \cdot \mathbf{L}=\frac{1}{2} \omega L \cos \phi
$$

where $\phi=$ angle between $\vec{\omega}$ and angular momentum \mathbf{L}
Since E is constant for this conservative system, and \mathbf{L} is constant for this torque -free system, $\omega \cos \phi=$ constant \Rightarrow the projection of $\vec{\omega}$ onto \mathbf{L} is constant.

Fig. 11-13.

The observer in the fixed reference frame thus sees the spin-axis vector $\vec{\omega}$ precess about the angular momentum vector \mathbf{L}, which causes $\vec{\omega}$ to sweep out a space cone.

Note that the spin axis vector $\vec{\omega}$ always points at the spot where the two cones touch.

This is because the three vectors $\mathbf{L}, \vec{\omega}$, and $\hat{\mathbf{x}}_{3}$ all inhabit the same plane.

Show that $\mathbf{L}, \vec{\omega}$, and $\hat{\mathbf{x}}_{3}$ are coplanar:
Proof:
If this is the case, then $\vec{\omega} \times \hat{\mathbf{x}}_{3}$ is normal to $\vec{\omega}$, and $\hat{\mathbf{x}}_{3}$, and thus $\mathbf{L} \cdot\left(\vec{\omega} \times \hat{\mathbf{x}}_{3}\right)$ must be zero.

Check:

$$
\begin{aligned}
\vec{\omega} \times \hat{\mathbf{x}}_{3} & =\left(\omega_{1} \hat{\mathbf{x}}_{1}+\omega_{2} \hat{\mathbf{x}}_{2}+\omega_{3} \hat{\mathbf{x}}_{3}\right) \times \hat{\mathbf{x}}_{3} \\
& =-\omega_{1} \hat{\mathbf{x}}_{2}+\omega_{2} \hat{\mathbf{x}}_{1} \\
\text { and since } \mathbf{L} & =\{\mathbf{I}\} \cdot \vec{\omega}=I_{1} \omega_{1} \hat{\mathbf{x}}_{1}+I_{2} \omega_{2} \hat{\mathbf{x}}_{2}+I_{3} \omega_{3} \hat{\mathbf{x}}_{3} \\
\text { then } \mathbf{L} \cdot\left(\vec{\omega} \times \hat{\mathbf{x}}_{3}\right) & =I_{1} \omega_{1} \omega_{2}-I_{2} \omega_{2} \omega_{1}=0
\end{aligned}
$$

since a symmetric top has $I_{1}=I_{2}$.
Thus $\mathbf{L}, \vec{\omega}$, and $\hat{\mathbf{x}}_{3}$ are always coplanar.

Thus the inertial observer sees both the spin axis $\vec{\omega}$ and the body's symmetry axis $\hat{\mathbf{x}}_{3}$ precess about the fixed angular momentum vector \mathbf{L} at the same angular rate Ω.

