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Problem Set #6

due Thursday December 1

at the start of class

late homework will not be accepted

text problems 10–8, 10–18, 11–2, 11–7, 11-13, 11–20, 11–31

Final Exam

Tuesday December 6

10am-1pm in MM310

(note the room change!)

Chapter 11: Dynamics of Rigid Bodies

rigid body = a collection of particles whose relative positions are fixed.

We will ignore the microscopic thermal vibrations occurring among a ‘rigid’

body’s atoms.
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The inertia tensor

Consider a rigid body that is composed of N particles.

Give each particle an index α = 1 . . . N .

The total mass is M =
∑

α mα.

This body can be translating as well as rotating.

Place your moving/rotating origin on the body’s CoM:

Fig. 10-1.

the CoM is at R =
1

M

∑

α

mαr
′
α

where r′α = R + rα = α’s position wrt’ fixed origin

note that this implies
∑

α

mαrα = 0

Particle α has velocity vf,α = dr′α/dt relative to the fixed origin,

and velocity vr,α = drα/dt in the reference frame that rotates about axis ~ω.

Then according to Eq. 10.17 (or page 6 of Chap. 10 notes):

vf,α = V + vr,α + ~ω × rα = α’s velocity measured wrt’ fixed origin

and V = dR/dt = velocity of the moving origin relative to the fixed origin.

What is vr,α for the the particles that make up this rigid body?
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Thus vα = V + ~ω × rα after dropping the f subscript

and Tα =
1

2
mαv

2
α =

1

2
mα(V + ~ω × rα)2 is the particle’s KE

so T =
N
∑

α=1

Tα the system’s total KE is

=
1

2
MV2 +

∑

α

mαV · (~ω × rα) +
1

2

∑

α

mα(~ω × rα)2

=
1

2
MV2 + V ·

(

~ω ×
∑

α

mαrα

)

+
1

2

∑

α

mα(~ω × rα)2

where M =
∑

α mα = the system’s total mass.

Recall that
∑

α mαrα = 0, so

thus T = Ttrans + Trot

where Ttrans =
1

2
MV2 = KE due to system’s translation

and Trot =
1

2

∑

α

mα(~ω × rα)2 = KE due to system’s rotation

Now focus on Trot,

and note that (A×B)2 = A2B2 − (A ·B)2 ← see text page 28 for proof.

Thus

Trot =
1

2

∑

α

mα[ω2r2
α − (~ω · rα)2]
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In Cartesian coordinates,

~ω = ωxx̂ + ωyŷ + ωzẑ

so ω2 = ω2
x + ω2

y + ω2
z ≡

3
∑

i=1

ω2
i

and rα =

3
∑

i=1

xα,ix̂i

so ~ω · rα =
3
∑

i=1

ωixα,i

Thus

Trot =
1

2

∑

α

mα





(

3
∑

i=1

ω2
i

)(

3
∑

k=1

x2
α,k

)

−

(

3
∑

i=1

ωixα,i

)





3
∑

j=1

ωjxα,j









We can also write

ωi =

3
∑

j=1

ωjδi,j

where δi,j =

{

1 i = j

0 i 6= j

so ω2
i = ωi

3
∑

j=1

ωjδi,j =
3
∑

j=1

ωiωjδi,j

and also note that

(

∑

i

ai

)(

∑

i

bi

)

=
∑

i

∑

j

aibi ≡
∑

i,j

aibi

4



so Trot =
1

2

∑

α

mα





∑

i,j

ωiωjδi,j

(

3
∑

k=1

x2
α,k

)

−
∑

i,j

ωiωjxα,ixα,j





=
1

2

∑

α

mα

∑

i,j

ωiωj

[

δi,j

3
∑

k=1

x2
α,k − xα,ixα,j

]

=
1

2

∑

i,j

ωiωj

∑

α

mα

[

δi,j

3
∑

k=1

x2
α,k − xα,ixα,j

]

≡
1

2

3
∑

i=1

3
∑

j=1

Ii,jωiωj

where Ii,j ≡
∑

α

mα

[

δi,j

3
∑

k=1

x2
α,k − xα,ixα,j

]

are the 9 elements of a 3× 3 matrix called the inertial tensor {I}.

Note that the Ii,j has units of mass×length2.

Since xα,1 = xα, xα,2 = yα, xα,3 = zα,

{I} =







∑

α mα(y2
α + z2

α) −
∑

α mαxαyα −
∑

α mαxαzα

−
∑

α mαyαxα

∑

α mα(x2
α + z2

α) −
∑

α mαyαzα

−
∑

α mαzαxα −
∑

α mαzαyα

∑

α mα(x2
α + y2

α)







Be sure to write your matrix elements Ii,j consistently;

here, the i index increments down along a column

while the j index increments across a row.

Also note that Ii,j = Ij,i ⇒ the inertia tensor is symmetric.

The diagonal elements Ii,i = the moments of inertia

while the off–diagonal elements Ii6=j =the products of inertia
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For a continuous body, mα → dm = ρ(r)dV

dIi,j →

(

δi,j

3
∑

k=1

x2
k − xixj

)

dm

= the contribution to Ii,j due to mass element dm = ρdV

thus Ii,j =

∫

V

dIi,j =

∫

V

ρ(r)

(

δi,j

3
∑

k=1

x2
k − xixj

)

dV

where the integration proceeds over the system’s volume V .

Example 11.3

Calculate {I} for a cube of mass M and width b and uniform density ρ =

M/b3. Place the origin at one corner of the cube.

Fig. 11-3.
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I1,1 = ρ

∫ b

0

dx

∫ b

0

dy

∫ b

0

dz(x2 + y2 + z2 − x2)

= ρb

∫ b

0

dy(y2b +
1

3
b3)

= ρb(
1

3
b4 +

1

3
b4)

=
2

3
ρb5 =

2

3
Mb2

It is straightforward to show that the other diagonal elements are

I2,2 = I3,3 = I1,1.

The off–diagonal elements are similarly identical:

I1,2 = −ρ

∫ b

0

dx

∫ b

0

dy

∫ b

0

dz · xy

= −ρ

(

1

2
b2

)(

1

2
b2

)

b = −
1

4
ρb5 = −

1

4
Mb2

= Ii6=j

Thus this cube has an inertia tensor

{I} = Mb2







2/3 −1/4 −1/4

−1/4 2/3 −1/4

−1/4 −1/4 2/3






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Principal Axes of Inertia

The axes x̂i that diagonalizes a body’s inertia tensor {I}

is called the principal axes of inertia.

In this case

Ii,j = Iiδi,j

so Trot =
1

2

3
∑

i=1

3
∑

j=1

Ii,jωiωj = rotational KE

=
1

2

3
∑

i=1

Iiω
2
i

where the three Ii are the body’s principal moments of inertia.

If this body is also rotating about one of its principal axis,

say, the ẑ, then ~ω = ωẑ and

Trot =
1

2
Izω

2

which is the familiar formula for the rotational KE in terms of inertia Iz

found in the elementary textbooks.

⇒those formulae with Trot = 1
2
Iω2 are only valid when the rotation axis ~ω

lies along one of the body’s three principal axes.

The procedure for determining the orientation of a body’s principal axes of

inertia is given in Section 11.5.
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Angular Momentum

The system’s total angular momentum relative to the

moving/rotating origin Orot is

L =
∑

α

mαrα × vα

where rα and vα are α’a position and velocity relative to Orot.

Recall that vα = ~ω × rα for this rigid body (Eqn. 10.17), so

L =
∑

α

mαrα × (~ω × rα)

Chapter 1 and problem 1-22 show that

A× (B×A) = A2B− (A ·B)A

so L =
∑

α

mα[r2
α~ω − (rα · ~ω)rα]

and the ith component of L is

Li =
∑

α

mα[r2
αωi − (rα · ~ω)xα,i]

And again use

r2
α =

3
∑

k=1

x2
α,k rα · ~ω =

3
∑

j=1

xα,jωj ωi =
3
∑

j=1

ωjδi,j
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So

Li =
∑

α

mα





3
∑

k=1

x2
α,k

3
∑

j=1

ωjδi,j −
3
∑

j=1

xα,jωjxα,i





=
3
∑

j=1

ωj

∑

α

mα

(

δi,j

3
∑

k=1

x2
α,k − xα,ixα,j

)

=
3
∑

j=1

Iijωj

where the Ii,j are the elements of the inertial tensor {I}.

Note that

L =

3
∑

i=1

Lix̂i =

3
∑

i=1

3
∑

j=1

Iijωjx̂i

= {I} · ~ω

Lets confirm this last step by explicitly doing the matrix multiplication:

L =





L1

L2

L3



 = {I} · ~ω =





I11 I12 I13

I21 I22 I23

I31 I32 I33









ω1

ω2

ω3





=





I11ω1 + I12ω2 + I13ω3

I21ω1 + I22ω2 + I23ω3

I31ω1 + I32ω2 + I33ω3



 =







∑

j I1jωj
∑

j I2jωj
∑

j I3jωj







which confirms L = {I} · ~ω.

Evidently the inertia tensor relates the system’s

angular momentum L to its spin axis ~ω.
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Now examine

3
∑

i=1

1

2
ωiLi =

1

2
~ω · L =

1

2

3
∑

i=1

3
∑

j=1

Iijωiωj

= Trot = the body’s KE due to its rotation

⇒ Trot =
1

2
~ω · L =

1

2
~ω · {I} · ~ω

Note that the RHS is a scalar (as is should) since

{I} · ~ω is a vector, and a vector·vector = scalar.

Chapter 9 showed that if an external torque N is applied to the body, then

N =
dL

dt
= {I} · ~̇ω

since {I} is a constant.

We now have several methods available for obtaining the equation of motion:

Newton’s Laws,

Lagrange equations,

Hamilton’s equation,

and N = {I} · ~̇ω (which follows from Newton’s Laws)

the latter equation is usually quite handy for rotating rigid bodies.
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Example 11.4

A plane pendulum with two masses: m1 lies at one end of the rod of length

b, while m2 is at the midpoint. What is the frequency of small oscillations?

Fig. 11-5.

This solution will use N = {I} · ~̇ω.

Note that ~ω = θ̇ẑ which point out of the page,

so ~̇ω = θ̈ẑ.
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The inertia tensor has elements

Iij =
∑

α

mα

(

δi,j

3
∑

k=1

x2
α,k − xα,ixα,j

)

so I11 = 0

I22 = m1(b
2 − 0) + m2

[

(

b

2

)2

− 0

]

= (m1 +
1

4
m2)b

2

= I33

I12 = −m1b · 0−m2

(

b

2

)

· 0 = 0

likewise all Ii6=j = 0

Thus

{I} =







0 0 0

0 (m1 + 1
4
m2)b

2 0

0 0 (m1 + 1
4
m2)b

2







The torque on the masses due to gravity is

N =
∑

α

rα × Fα

=
∑

α

rα ×mαgα

where g = g cos θx̂− g sin θŷ

and rα = rαx̂

so rα × g = −rαg sin θ(x̂× ŷ = ẑ)

and N = −m1bg sin θẑ−m2

b

2
g sin θẑ

= −

(

m1 +
1

2
m2

)

bg sin θẑ
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Since N = {I} · ~̇ω,





0

0

−(m1 + 1
2
m2)bg sin θ



 =







0 0 0

0 (m1 + 1
4
m2)b

2 0

0 0 (m1 + 1
4
m2)b

2







·





0

0

θ̈





⇒ −(m1 +
1

2
m2)bg sin θ = (m1 +

1

4
m2)b

2θ̈

or θ̈ + ω2
0θ ' 0 for small |θ|

where ω0 =

√

m1 + 1
2
m2

m1 + 1
4
m2

(g

b

)

is the frequency of small oscillations.

Note that you could also have solved this problem using the Lagrange

equations.

Since {I} is diagonal, our coordinate system is evidently the pendulum’s

principal axes. In this case, the system’s Lagrangian L is

L = T + U

where T = Trot =
1

2

3
∑

i=1

Iiω
2
i

where Ii = the diagonal elements

so T =
1

2
I33ω

2 =
1

2
(m1 +

1

4
m2)b

2θ̇2

and U = −m1gb cos θ −m2g
b

2
cos θ

The resulting Lagrange will lead to the same equation of motion,

namely θ̈ ' ω2
0θ.
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Euler’s equations for a rigid body

The following will derive Euler’s equations for a rigid body, which describe

how a rigid body’s orientation is altered when a torque is applied.

Recall that a rotating rigid body has angular momenta components

Li =
3
∑

j=1

Iijωj (see Eq. 11.20a)

so L =

3
∑

i=1

Lix̂i =

3
∑

i=1

3
∑

j=1

Iijωjx̂i = total angular momentum vector

Keep in mind that the x̂i are the axes in the rotating coordinate system.

Now exert a external torque N = L̇ on the body.

And as is usual, all time derivatives are to be computed in the fixed reference

frame. Thus

N =
d

dt

∑

ij

Iijωjx̂i

=
∑

ij

Iij

[

ω̇jx̂i + ωj

(

dx̂i

dt

)

fixed

]

Recall that for any vector Q,
(

dQ

dt

)

fixed

=

(

dQ

dt

)

rotating

+ ~ω ×Q (Eqn. 10.12)

so

(

dx̂i

dt

)

fixed

= ~ω × x̂i

Thus

N =
∑

ij

Iij (ω̇jx̂i + ωj~ω × x̂i)
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Now lets choose our coordinate system to be the body’s principal axes,

so Iij = Iiδij and

N =
∑

i

Ii (ω̇ix̂i + ωi~ω × x̂i)

= I1ω̇1x̂ + I2ω̇2ŷ + I3ω̇3ẑ + I1ω1~ω × x̂ + I2ω2~ω × ŷ + I3ω3~ω × ẑ

Do the cross products. First note that

x̂× ŷ = ẑ

ŷ × ẑ = x̂

ẑ× x̂ = ŷ

and ~ω = ω1x̂ + ω2ŷ + ω3ẑ = the body’s spin axis

so ~ω × x̂ = ω2ŷ × x̂ + ω3ẑ× x̂ = −ω2ẑ + ω3ŷ

~ω × ŷ = ω1ẑ− ω3x̂

~ω × ẑ = −ω1ŷ + ω2x̂

Consequently

N = x̂(I1ω̇1 − I2ω2ω3 + I3ω3ω2) + ŷ(I2ω̇2 + I1ω1ω3 − I3ω3ω1)

+ ẑ(I3ω̇3 − I1ω1ω2 + I2ω2ω1)

The three components of this equation,

Nx = I1ω̇1 − (I2 − I3)ω2ω3

Ny = I2ω̇2 − (I3 − I1)ω3ω1

Nz = I3ω̇3 − (I1 − I2)ω1ω2

are known as Euler’s equations, which relate the torque Ni

to the time–rate of change ω̇i in the rigid body’s orientation.
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How to use Euler’s eqns.

Suppose you want to know what the torque N does to a rigid body.

In other words, how does this torque alter the body’s spin axis ~ω and

re–orient its principal axes?

1. Choose the orientation of rotating coordinate system

at some instant of time t0.

2. Make note of ~ω and N at time t = t0

3. Calculate {I} and use the method described in Section 11.5 do determine

the body’s principal moments of inertia I1, I2, I3 and the orientation of its

principal axes x̂, ŷ, ẑ at time t0

4. Use Euler’s Equations to obtain ω̇1, ω̇2, ω̇3

5. Solve those equations (if possible) to obtain ω1(t), ω2(t), ω3(t).

This give you the time–history of the body’s rotation axis ~ω.

6. Now solve for the body’s changing orientation, ie, determine the time–

history of the body’s principal axes x̂i(t) which evolve according to

dx̂i

dt
= ~ω(t)× x̂i

solving this equation completely specifies the body’s motion over time.

Good luck...
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Example 11.10—A simple application of Euler’s Eqns.

What torque must be exerted on the dumbbell in order to maintain

this motion, ie, keep ω = constant?

Fig. 11-11.

1. First choose the orientation of the rotating coordinate system:

set ẑ along the length of the rod

since L̂ is perpendicular to the rod, let this direction=ŷ

and x̂ is chosen to complete this right–handed coordinate system.

2. From the diagram, ~ω = ω sin αŷ + ω cos αẑ

so ω1 = 0, ω2 = ω sin α, and ω3 = ω cos α

The torque N = Nxx̂ + Nyŷ + Nzẑ is to be determined.
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3. Calculate {I}:

Use Iij =
∑

α mα(δij

∑

k x2
α,k − xα,ixα,j) to show that

{I} =







(m1 + m2)b
2 0 0

0 (m1 + m2)b
2 0

0 0 0







evidently our coordinate system is this body’s principal axes. Yea!

The principal moments of inertia are thus I1 = I2 = (m1+m2)b
2 and I3 = 0.

4. Note that the ω̇i = 0. Thus Euler’s eqns. are:

Nx = I1ω̇1 − (I2 − I3)ω2ω3 = −(m1 + m2)b
2ω2 sin α cos α

Ny = I2ω̇2 − (I3 − I1)ω3ω1 = 0

Nz = I3ω̇3 − (I1 − I2)ω1ω2 = 0

The torque that keeps the dumbbell rotating about the fixed axis ~ω is

N = −(m1 + m2)b
2ω2 sin α cos αx̂.
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Force–free motion of a symmetric top

The symmetric top has azimuthal symmetry about one axis, assumed here

to be the ẑ = x̂3 axis.

A symmetric top also have I1 = I2 6= I3.

The ‘force–free’ means torque N = 0.

For this problem, Euler’s eqns. become:

I1ω̇1 − (I1 − I3)ω2ω3 = 0

I1ω̇2 − (I3 − I1)ω3ω1 = 0

I3ω̇3 = 0

where ~ω = ω1x̂ + ω2ŷ + ω3ẑ is the body’s spin–axis vector.

Keep in mind that the x̂, ŷ, ẑ axes are the body’s principal axes

that corotate with the body.

Principal axis rotation corresponds to the case where ~ω is parallel to any

one of the body’s principal axes, say, ~ω = ω2ŷ.

How does that body’s spin–axis ~ω evolve over time?

Non–principal axis rotation is the more interesting case where

~ω = ω1x̂ + ω2ŷ + ω3ẑ where at least two of the ωi are nonzero.

Note that ω̇3 = 0 so ω3 = constant.

20



Then

ω̇1 = −

(

I3 − I1

I1

ω3

)

ω2 = −Ωω2

ω̇2 = +

(

I3 − I1

I1

ω3

)

ω1 = +Ωω1

where Ω ≡
I3 − I1

I1

ω3 = constant

Solving these coupled equations will give you the time–history

of the top’s spin–axis ~ω.

To solve, set

η(t) ≡ ω1(t) + iω2(t)

so η̇ = ω̇1 + iω̇2

= −Ωω2 + iΩω1

or η̇ = iΩη

so η(t) = AeiΩt

= A cos Ωt + iA sin Ωt

= ω1 + iω2

⇒ ω1(t) = A cos Ωt

ω2(t) = A sin Ωt

while ω3 = constant
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Fig. 11-12.

Note that ω1 and ω2 are the projections of the ~ω axis onto the x̂–ŷ plane,

which traces a circle around the ẑ axis with angular velocity Ω.

Evidently the spin–axis precesses about the body’s symmetry axis ẑ when

~ω is not aligned with one of the body’s principal axes.

An observer who co–rotates with the top will see this precessing spin–axis

vector ~ω sweep out a cone, called the body cone.

What does the observer in the fixed reference frame see?

First note that the system’s total energy is pure rotational:

E = Trot =
1

2
~ω · L =

1

2
ωL cos φ

where φ = angle between ~ω and angular momentum L

Since E is constant for this conservative system,

and L is constant for this torque–free system,

ω cos φ = constant ⇒ the projection of ~ω onto L is constant.
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Fig. 11-13.

The observer in the fixed reference frame thus sees the spin–axis vector ~ω

precess about the angular momentum vector L,

which causes ~ω to sweep out a space cone.

Note that the spin axis vector ~ω always points at the spot where the two

cones touch.

This is because the three vectors L, ~ω, and x̂3 all inhabit the same plane.
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Show that L, ~ω, and x̂3 are coplanar:

Proof:

If this is the case, then ~ω × x̂3 is normal to ~ω, and x̂3,

and thus L · (~ω × x̂3) must be zero.

Check:

~ω × x̂3 = (ω1x̂1 + ω2x̂2 + ω3x̂3)× x̂3

= −ω1x̂2 + ω2x̂1

and since L = {I} · ~ω = I1ω1x̂1 + I2ω2x̂2 + I3ω3x̂3

then L · (~ω × x̂3) = I1ω1ω2 − I2ω2ω1 = 0

since a symmetric top has I1 = I2.

Thus L, ~ω, and x̂3 are always coplanar.

Thus the inertial observer sees both the spin axis ~ω

and the body’s symmetry axis x̂3 precess about the

fixed angular momentum vector L at the same angular rate Ω.
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