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Chapter 10: Motion in a Noninertial Reference Frame

Recall that Newton’s Laws of motion are valid in an inertial

(ie, non–accelerated) reference frame.

Is this classroom an inertial reference frame? Why or why not?

Since there is no reference frame that is absolutely at rest, we need to derive

the laws that describe motion in a non–inertial reference frames.

In particular, we are going to focus on the motion of bodies

moving in a rotating reference frame.

This will allow us to calculate the motion of bodies near the surface of a rotat-

ing planet, as well as the motion of a rotating rigid body (eg, a spinning top).
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A rotating coordinate system

Let the vector r′ point to particle P from the origin of some

‘fixed’ or inertial coordinate system.

Let R point to the origin of some noninertial coordinate system;

this accelerated origin can be translating as well as rotating.

Let r = the position of particle P in this rotating ref’ frame. Thus:

r′ = R + r

Fig. 10–1.

Now use Newton’s Law, which is valid in the stationary reference frame,

to derive the acceleration of point P, r̈, as seen in the rotating ref’ frame.

First, compute ṙ and then get r̈.

We do this by first computing ṙ′ = P’s velocity in the fixed reference frame:
(

dr′

dt

)

fixed

=

(

dR

dt

)

fixed

+

(

dr

dt

)

fixed

where the ()fixed is used to indicate that we are calculating these

velocities with respect to the fixed origin.
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Note that the moving origin can be translating as well as rotating.

Thus (dR/dt)fixed should be regarded as the translational velocity

of the moving origin (measured in the fixed frame).

The right term will thus account for any possible rotation of the

moving origin.

The position of particle P in the moving ref’ frame is:

r =
∑

i

xix̂i

which is shorthand for = xx̂ + yŷ + zẑ

Thus its velocity is

(

dr

dt

)

fixed

=
∑

i

ẋix̂i +
∑

i

xi
dx̂i

dt

where the first term on the right is simply

P’s velocity measured in the rotating frame, ie, (dr/dt)rot,

and the second term is due to the rotation of the moving coordinate system.
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Now calculate dx̂i/dt,

which is due to the rotation of the moving origin about the rotation axis ~ω.

We will also use the magnitude of the rotation axis to indicate

the rotation rate, ie ω = |~ω|.

Fig. 1–19

If α is the angle between x̂i and ~ω, then x̂i moves a distance ∆x̂i in time ∆t.

Note that ∆x̂i is perpendicular to both x̂i and ~ω, so ∆x̂i ∝ (~ω × x̂i).

We also anticipate that ∆x̂i ∝ ∆t, so we write ∆x̂i = γ∆t~ω × x̂i,

where γ is some coefficient.
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Now show that γ = 1. But first note that

|~ω × x̂i| = ω sin α since |x̂i| = 1, and that sin α =
`

|x̂i|
= `

⇒ |~ω × x̂i| = ω`

And since |∆x̂i| = distance the end of x̂i has traveled in time ∆t, then

|∆x̂i| = `ω∆t = γ∆t|~ω × x̂i| = γ∆tω`

this implies that γ = 1

thus
dx̂i

dt
=

∆x̂i

∆t
= ~ω × x̂i

which is the velocity of the x̂i axes due to their rotation about the ~ω axis.

This velocity is measured relative to the origin of the fixed reference frame.

Plug this result back into our earlier equation:
(

dr

dt

)

fixed

=
∑

i

ẋix̂i +
∑

i

xi
dx̂i

dt

=

(

dr

dt

)

rot

+
∑

i

xi~ω × x̂i

=

(

dr

dt

)

rot

+ ~ω × r

The above result is of course true for any arbitrary vector Q:
(

dQ

dt

)

fixed

=

(

dQ

dt

)

rot

+ ~ω ×Q

ie, the velocity of Q as measured in the fixed reference frame =

the velocity of Q in the rotating frame + ~ω × Q.

Keep this result handy...we will use it again.
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Fig. 10–1.

Or if we again adopt r′ = R + r,

where r′ is particle P’s position vector in the fixed ref’ frame,

R is the position vector of the moving origin,

and r = P’s position relative to the moving origin, then
(

dr′

dt

)

fixed

=

(

dR

dt

)

fixed

+

(

dr

dt

)

rot

+ ~ω × r

Or if we define

vf = particle P’s velocity relative to the fixed origin

V = translational velocity of the moving origin (relative to the fixed origin)

vr = P’s velocity relative to the rotating axes

~ω = angular velocity of the rotating axes

~ω × r = translational velocity due to the rotating axes,

Then

vf = V + vr + ~ω × r
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Centrifugal & Coriolis forces

Now calculate particle P’s acceleration af as measured in the fixed frame:

af =

(

dvf

dt

)

fixed

=

(

dV

dt

)

fixed

+

(

dvr

dt

)

fixed

+ ~̇ω × r + ~ω ×

(

dr

dt

)

fixed

=
F

m

where F is the force on particle P which has mass m.

set R̈f =

(

dV

dt

)

fixed

= the translational acceleration of the moving origin

The (dvr/dt)fixed term is obtained using our formula for dQ/dt:
(

dvr

dt

)

fixed

=

(

dvr

dt

)

rot

+ ~ω × vr

= ar + ~ω × vr

where ar is P’s acceleration as measured in the rotating reference frame.

The last term is:

~ω ×

(

dr

dt

)

fixed

= ~ω ×

[(

dr

dt

)

rot

+ ~ω × r

]

= ~ω × vr + ~ω × (~ω × r)

Thus

af = R̈f + ar + ~̇ω × r + 2~ω × vr + ~ω × (~ω × r) =
F

m
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Now suppose you are an observer that co–moves and co–rotates

with this moving/rotating reference frame.

What is P’s acceleration that you would measure in this moving ref’ frame?

You would thus see particle P move as if it were driven by the effective force

Feff = mar = F − mR̈f − m~̇ω × r − 2m~ω × vr − m~ω × (~ω × r)

Keep in mind that Feff is a fictitious force!

It is merely the invention of the observer who insists writing a Newton–esque

law of motion Feff = mar.

The only real force in this problem is the inertial force F;

the other “noninertial” force terms are a consequence of the observer

employing a noninertial reference frame.

The first two noninertial force terms, mR̈f and m~̇ω × r, are due to:

translational acceleration of the moving origin &

changes in the orientation of the rotation axis ~ω.

However these terms are zero if the moving frame is merely rotating about

a fixed axis with a constant angular velocity ω.

This will be typical of the problems studied in this class.
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The remaining two terms are more important:

−m~ω × (~ω × r) = centrifugal force

−2m~ω × vr = Coriolis force

Which direction is the centrifugal force pointing?

Fig. 10–3

The centrifugal force is perpendicular to & points away from the ~ω axis.
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Example: A hockey puck is initially stationary on a frictionless

merry–go–round that rotates counter–clockwise with an angular velocity ω.

An observer on the merry–go–round releases the puck from an off–axis spot.

In which directions does the puck initially move in due to

centrifugal & Coriolis forces?

First: what is F =?. R̈f? ~̇ω × r?
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Another observer sitting in a fixed reference frames also watches the

puck—what does he see?

Motion at the Surface of the Earth

Earth spins about its rotation axis with an angular frequency

ω =
2π

1 day
= 7.3 × 10−5 radians/sec

Place the fixed (inertial) coordinates (x̂′, ŷ′, ẑ′) at the center of the Earth,

and the moving coordinates (x̂, ŷ, ẑ) at the surface

such that x̂ points South, and ŷ points East, and ẑ points Up:

Fig. 10–9
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Examine how the centrifugal force alters our perception of gravity F = mg.

Also assume that the Earth’s rotation pole ~ω = constant. Then

ar = g0 − R̈f − ~̇ω × r − 2~ω × vr − ~ω × (~ω × r)

where g0 = −
GM⊕

R2
f

R̂f is the downward pull due to gravity

Is R̈f = 0?

recall that

(

dQ

dt

)

fixed

=

(

dQ

dt

)

rot

+ ~ω × Q

thus R̈f =

(

dṘf

dt

)

fixed

=

(

dṘf

dt

)

rot

+ ~ω × Ṙf

but Rf = Rf ẑ so

(

dṘf

dt

)

rot

= 0

and R̈f = ~ω × Ṙf

similarly Ṙf =

(

dRf

dt

)

fixed

=

(

dRf

dt

)

rot

+ ~ω ×Rf

⇒ R̈f = ~ω × (~ω ×Rf)

Plug this result into ar:

ar = g0 − 2~ω × vr − ~ω × [~ω × (Rf + r)]

' g0 − 2~ω × vr − ~ω × (~ω × Rf)

for motion near the Earth’s surface where |r| � |Rf |.

Consequently, a plumb line (eg, a mass dangling from a string) does not

point directly towards the center of the Earth,

due to the centrifugal acceleration −~ω × (~ω × Rf).

And if you cut the string, the Coriolis acceleration −2~ω × vr

will cause an additional deflection as the mass falls.
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Example 10.3

Estimate the deflection caused by the Coriolis force as a particle falls a

distance h due to gravity.

The particle’s acceleration in the rotating reference frame is

ar ' g0 − 2~ω × vr − ~ω × (~ω × Rf)

≡ g − 2~ω × vr

where g ≡ g0 − ~ω × (~ω × Rf ) is the effective gravity that includes the

constant centrifugal term.

Note that the centrifugal force causes g to deviate slightly

from the normal direction, ẑ.

However we will ignore this slight deviation and write g =' gẑ.

From the diagram,

~ω = −ω sin(π/2 − λ)x̂ + ω cos(π/2 − λ)ẑ

= −ω cos λx̂ + ω sin λẑ

and vr = vxx̂ + vyŷ + vzẑ ' vzẑ ' −gtẑ

since we anticipate the horizontal deflections and velocities will be small

compared to the vertical motions.
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Thus

~ω × vr =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

−ω cos λ 0 ω sin λ

0 0 −gt

∣

∣

∣

∣

∣

∣

= −ωgt cos λŷ

So ar ' +2ωgt cos λŷ − gẑ

= ẍx̂ + ÿŷ + z̈ẑ

⇒ ẍ = 0

ÿ = 2ωgt cos λ

z̈ = −g

How do I obtain the particle’s vertical motion z(t)?

ż = −gt so z(t) = h − 1
2
gt2.

How do I obtain the free–fall time until impact, tf?

z(tf) = 0 ⇒ tf =
√

2h/g.

How do I solve for the particle’s deflection due to the Coriolis force?

ẏ(t) = ωgt2 cos λ

y(t) =
1

3
ωgt3 cos λ.

=
ω

3

√

8h3

g
cos λ

Thus a person at latitude λ = 45◦ who drops a pebble from a height of

h = 100 m will see the pebble deflected a distance y = 1.6 cm away from

the downward direction.

Which way was he pebble deflected—N,S,E, or W?

Note that the angular deflection due to Coriolis is small,

φ ' y
h = 1.6 × 10−4 radians ' 0.01 degrees.
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