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What is a Kuiper Belt Object (KBO)?

from CICLOPS: Cassini Imaging page.

KBOs are distant, ice—rich debris that
were left over from when Solar System
first formed

likely heavily cratered
due to impacts w/other KBOs,
«<perhaps like Phoebe

Phoebe is in a very wide, retrograde
orbit about Saturn—was probably
captured from heliocentric orbit

— some  suggest that Phoebe
originated in the Kuiper Belt
(maybe...)

nonetheless, this pic’ of Phoebe might
be a representative of a typical KBO



What is the Kuiper Belt?

e a vast swarm of giant comets orbiting just beyond Neptune

e observed KBOs have radii
™ 10 $ R <1000 km

0.6
: — N(R > 50 km) ~ 107
— mass(R > 50 km) ~ 0.1 Mg
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§ — resonant populations

0.2 (e.g., 3:2, 2:1,5:2)

— Main Belt (40 < a < 50 AU,
%1 ie, between 3:2 and 2:1)
0.0 — Scattered Disk

(a > 50 AU & 30 < q < 40 AU)

— Centaurs (a < aNeptune)

semimajor axis a  (AU)

orbits from Minor Plant Center.
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orbits from Minor Plant Center.

e these eccentric KBOs orbiting at Neptune’s MMRs are generally interpreted as
evidence for Neptune’s orbit having migrating outwards by Aane, >~ 9 AU



3:2 = evidence for planet migration
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e Outward migration causes

Neptune’s mean motion
resonances (MMR’s) to sweep
out across the Kuiper Belt

ex: the 3:2 is where a KBO orbits 2
times for every 3 orbits of Neptune

Malhotra (1993) showed that
KBOs get trapped at sweeping
MMR’s, are dragged outwards,
and have e pumped up

— this mechanism accounts for
Pluto, with e = 0.25 at 3:2

— the e—pumping depends only
on Neptune's displacement,
e = f(Aa)

e KBOs at Neptune’s 3:2 have e = 0.33, so e = f(Aa) = 0.33 = Aa =12 AU,
so they were dragged outwards from a = 28 — 40 AU

e since Neptune’s 3:2 resonance expanded by 12 AU,
Its semimajor axis evidently expanded by Aane, = 9 AU
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Why would the giant planets migrate?

Neptund

Uranus J

- Saturn]

Jupiter J

2x107  3x107  ax10’  s5x10’
time t  (years)

from Hahn & Malhotra (1999)

cores of giant planets formed
within a planetesimal disk

planet—formation was likely not
100% efficient

— residual planetesimal debris is
left over

recently—formed planets scatter
the planetesimal debris, exchange
L with planetesimal disk

Nbody simulations (Fernandez & Ip
1984, Hahn & Malhotra 1999, Gomes,
Morby, Levison 2004) show planets
evolve away from each other, ie,
Jupiter inwards, Neptune outwards

e driving Neptune Aanep ~ 9 AU requires disk mass Mp ~ 50 Mg over 10 < r < 50 AU.



Migration into a dynamically cold Kuiper Belt

e red dots=observed KBO orbits

e Mercury Nbody integrator
(Chambers 1999) is used to
simulate Neptune’s migration
Into Kuiper Belt (black dots)

— 4 planets + 10* massless
p’s evolved for 4.5 Gyrs

— planet migration is driven
by an external torque on
planets, Aanep, = 9 AU

— Initial KB is dynamically cold

(1€ €initial = 0 = ijnitial)

e note: observed Main Belt has
eops ~ 0.1 while esim ~ 0.03
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=something has stirred—up the Kuiper Belt, either prior to,
or after the onset of planet—migration



Migration into a dynamically hot Kuiper Belt

by T 0 O SO -
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e other exotic resonances get populated: 11:6, 13:7, 13:6, 9:4, 12:5, 8:3, 11:4
e Mmigration into a previously stirred—up KB having e;initia1 ~ 0.1 can account for:
— Main Belte ~ 0.1
— the 7 KBOs known to librate at the 5:2



Compare simulation & observed inclinations
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e don’t directly simulated i's to observed KBO i's +——these are biased
e instead, compare ecliptic i—distribution— i's of bodies with latitudes |G| < 1°

— this model can account for bodies with i < 15°
— but it does not account for bodies with higher i’s

e this is problematic since ~ 1/2 of all KBOs have i > 15° (eg, Brown 2001)



Dealing with telescopic selection effects

e telescopes select for larger & brighter
KBOs that live nearest the Sun &
ecliptic

— discovery of low a, high e, and
low i KBOs are favored

use Monte Carlo methods to account
for selection effects

— replicate each Nbody particle x10%,
& randomize their positions along
their orbital ellipses

— assume a power—law in the bodies’
cumulative size distribution
NR) x R™®

— assign apparent magnitudes via
m = mg — 2.5 log(pR?AU?/r?),
where p = albedo

cumulative size distribution N(R)
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e the size distribution Q is obtained
from the KBO luminosity function:

Y)(m) = sky—plane number density
of KBOs brighter than magnitude

m

_ E(m) _ fn:oo dN(Cﬁém))dR

~ 10Q™/5

— the HST KBO survey by
Bernstein et al (2004)
shows that the ‘bright
end’ of Y(m < 24)
has logarithmic slope
a =dlog3/dm = Q/5 = 0.88

— observing the Belt 1 magnitude

fainter yields 8 x more KBOs

CLF [KBOs/sq deq]
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Nbody/Monte Carlo model of the Kuiper Belt
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(

semimajor axis a

— model 2:1 is overdense

— the model’s ‘Outer Belt’ of e ~ 0.1 particles beyond a > 50 AU
IS extremely overdense

x edge of Solar System at a ~ 50 AU (eg, Trujillo & Brown 2001)?

12



the apparent 2:1/Main Belt ratio

e plot the ratio of 2:1/Main Belt (MB)
KBOs as a function of magnitude m

— Note: although the number of known 1.0—, -
KBOs Iis sensitive to the sky—area ' i lated |
surveyed A (m) surveyed by various [
astronomers, their ratios are not %
sensitive to survey details o

~ 0.6
e the model’s 2:1/MB ratio ~ 0.8, €

while observed ratio ~ 0.04 2 04

— the observed 2:1 population is
underabundant by a factor of Cbserved
0.8/0.04 ~ 20, relative to model - - S T .

predictions 19 20 21 22 23 24

magnitude m_

e this discrepancy has been known for some time—see previous figure



The 3:2 population

|
2.0 I -
I
| simulated
@]
e but we didn’'t know that 5 1 5 )
the 3:2 is also depleted - |
(relative to the MB)bya < I
factor ~ 6—60 = |
- 1 O -
o
e Note also that the g |
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with m 0.5 observed 0
0,0- ......... T T |Q=27|\§“ ]
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e Why?
— a dearth of fainter objects in 3:2, not an overabundance of faint MB objects!

— can be accounted for if the 3:2 population has shallower Q = 2.7 size
distribution

— why might the 3:2 population be so different?
+ Note: asteroid families exhibit 2 < Q < 6 (Tanga et al 1999)

- asteroid families result when a parent asteroid collides & breaks up; the
physics of collisional breakup determines the fragments’ Q

- might the 3:2 KBO population be debris from the breakup of a large KBO?

15



Why are the observed resonant populations
depleted (relative to model expectations)?

e blame it on other unmodeled effects:

— planet migration is driven by scattering of planetesimals by planets

— particularly large or close scatterings at Neptune will cause its orbit
(and its resonances) to shudder some

— likewise for particles at resonances

x| expect this shaking of the resonance location & particles’ orbits
reduces the trapping efficiency & depletes the resonant populations

16



Upper limits on an Outer Belt

No KBOs have been detected in the
Outer Belt (OB) beyond a > 50 AU

— outer edge of the Solar System?

can infer several distinct upper limits:

— density of KBOs in OB is smaller
than MB density by factor f > 100,

— OR all OB bodies are fainter than the
faintest KBO in the MB, m = 24.5

x radii Rog < 80 km
(eg, Allen et al 2002)

— OR large bodies in OB are rare

x the OB size distribution is steep,
e, Q> 6.0

eccentricity
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The Scattered Disk of KBOs

Nbody integrations show that grav’
scattering by Neptune produces
a swarm of bodies in wide,
eccentric orbits at a 2> 50 AU
having perihelia 30 < q < 40 AU
(Duncan & Levison 1997)

but in this sim’, very few scattered
bodies persist over a Solar age

eccentricity e

rather, 90% of survivors in gray
zone are trapped at various exotic
resonances, eqg, 9:4, 11:4, 7.2, etc

only 10% are truly scattered,

30 40 50 60 70 80 Indicated by crosses
semimajor axis a (AU)

e KBOs in so—called Scattered Disk might not have had close approach to Neptune

— rather, they were placed there via resonance trapping 18



Neptune’s Trojans
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e 5 Trojans survived at Neptune’s triangular Lagrange points for 4.5 x 10? years

e the simulation’s Trojan/MB ratio is rt g ~ 0.01
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Centaurs

e Centaurs have a < aNeptune
0.6 F

.| e only 7 spotted during simulation’s
I final 2 Gyrs

e Simulated Centaurs are rare:

o
N

— due to short dynamical lifetime
~ 107 yrs

eccentricity e

=
N

— and sparse time sampling,
AT = 100 Myrs

e observed Centaurs are prominent,
due to proximity to Sun

0.0

semimajor axis a (AU)

e open circles show that all 7 simulated Centaurs emerged from MMRs

e simulation’s Centaur/MB ratio is ry /g ~ 6 x 10~*
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relative surface density o(r)

The surface density of the Kuiper Belt

10.0°F

o

truncated Belt,
t=4.5 Gyrs

=
|

e curves show how Neptune has
dynamically eroded the inner KB

— Note: model does not include
collisional erosion, another
important and unmodeled effect

e however 2:1 & 3:2 are very
depleted, and the Outer Belt
(a > 50 AU) is absent or unseen

— form a truncated Belt that
ignores depleted populations

e surface density of simulated truncated Belt agrees quite well with the KBOs’

observed o (r) from Trujillo & Brown (2001)
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(deg=2)

luminosity function Z(m_)

Calibrate the Kuiper Belt model

100.000 R [rrrrrrrT [y | RELELELEL LR L I

10.000
1.000
0.100

0.010

0.001 Ll,

simulated

observed |

20

21 22 23 24
apparant magnitude m,

to estimate the total KBO
population N, note the Belt’s
luminosity function X(m) o« N

estimate N by fitting the
simulation’s X4, to the observed
Yobs Of Bernstein et al (2004):

recall that the simulation’s i's are
too low, ie, my Belt is too thin

— median ig, ~ 3°,
while median i, ~ 15°
(from Brown 2001)

— simulated X, IS overdense by
factor f; ~ igps/isim ~ 5

e to compensate, first divide X, by fi and then fit X, t0 YXgps

e the final tally: there are N(R > 50 km) ~ 2 x 10° KBOs larger than 50 km
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Census of the Kuiper Belt

e assumptions:

— albedo p = 0.04 (eg, comet Halley’s albedo)

— body density p = 1 gm/cm?

— Q = 4.4 size distribution, except 3:2 population has Q = 2.7

Subclass ry,vmB N(R >50km) mass (Mg)
Centaurs 0.001 100 7x107°
Trojans 0.008 1,000 5x 1074
3:2 0.02 3,000 0.003
2:1 0.04 5,000 0.002
Scattered Disk 0.2 25,000 0.01
Main Belt 1.0 130,000 0.06
Total 160,000 0.08
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e these results are all within factors of ~ 2 of other estimates
that generally adopt rather simple models of the KB:

— TJL (2001): N(R > 50 km) ~ 70,000 and mass ~ 0.06 Mg,

— extrapolate Bernstein et al (2004) over entire Belt:
N(R > 50 km) ~ 170,000 and mass ~ 0.08 Mg

— Sheppard et al (2000): N centaurs(R > 50 km) ~ 100

e but recent HST observations of KBO binaries reveal
albedos of p ~ 0.1 (ie, 2.5 X larger than previously assumed)

— so0 KBO sizes are probably overestimated by /2.5 or 60%

— and masses overestimated by 2.5%/2 ~ 4 = Mgg ~ 0.02 Mg
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Summary of Findings

e Neptune’s migration into a dynamically cold Kuiper Belt (KB)
cannot account for the e ~ 0.1 that are observed in the Main Belt

— some other unknown mechanism was also responsible for stirring up the KB

e migration into a hot KB does account for the Main Belt e’s,
as well as the KBOs trapped at Neptune’s 5:2 (first noted by Chiang et al 2003)

— trapping also occurs at many other exotic resonances:
11:6, 13:7, 13:6, 9:4, 12:5, 8:3, 114

— this mechanism also parks particles in eccentric orbits in the Scattered Disk

x most of the simulation’s particles inhabiting the so—called Scattered Disk
at a < 80 AU were never scattered...
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e a comparison of the model to observations of the KB reveals:

— the model Belt is ‘too thin’ by a factor of f; ~ igps/isim ~ 5;
this is the main deficiency of the model

— also reveals that the observed resonant populations are depleted relative to
model predictions (for example, 2:1 & 3:2 are depleted by x20)

+ could be due to (unmodeled) scatterings at Neptune, or among particles
— If a hypothetical Outer Belt beyond a > 50 AU exists, it must

+ be underdense by a factor f > 100 relative to Main Belt

+ Or be composed of small bodies, R < 80 km

x or be composed of bodies having a steep size distribution, Q > 6.0

e a census of the Kuiper Belt reveals
N(R > 50 km) ~ 160, 000 having a mass ~ 0.02—0.08 Mg,
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