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1 Introduction
The following considers the secular evolution of a handful of perturbers as they
interact with a broad disk of particles. This process is modeled by treating the
disk as a set of nested gravitating rings whose mutual perturbations cause the
rings to flex and tilt over time. The system’s secular evolution is then governed
by the the classical Laplace–Lagrange secular solution which yields the systems
orbit elements (e, ω̃, i, Ω) over time (Murray and Dermott 1999). The main advan-
tage of this approach is that it is fully analytic so it rapidly provides the system’s
evolution. However there are limitations in our current implementation, namely,
that the the e and ω̃ evolution break down when adjacent rings enter crossing or-
bits. These limitations are described further in Section 4, as well as forthcoming
improvements to the model that will avoid this difficulty.

Two applications of the model are considered here: (i.) the primordial Kuiper
Belt and (ii.) Saturn’s rings.

2 The Kuiper Belt
The dots in Fig. 1 indicate the Kuiper Belt Objects (KBOs) eccentricities e and
inclinations i plotted versus their semimajor axes a. One plausible explanation
for the many Plutinos that inhabit Neptune’s 3:2 resonance at a = 39.5 AU is that
Neptune’s early orbit had expanded outwards by ∆r ∼ 7 AU as it began to scat-
ter the local planetesimal debris. This outwards expansion would cause Nep-
tune’s advancing mean–motion resonances to accumulate numerous KBOs at
resonance, which would also pump the trapped KBOs’ eccentricities up to the
observed values (Malhotra 1995). Although this scenario neatly explains the
orbital properties of the KBOs at Neptune’s 3:2 resonance, planet migration is
rather ineffective at exciting inclinations among the Main Belt KBOs that inhabit
the 40 . a . 50 AU zone. These KBO’s high inclinations of i ∼ 10◦ (see Fig. 1)
thus suggest that another mechanism was also responsible for having stirred up
the Kuiper Belt. The following applies the rings model to this environment to
see if secular perturbations from the giant planets might also be responsible for
disturbing the Kuiper Belt.

2.1 Initial Conditions

Although the current Kuiper Belt has a mass of MKB ∼ 0.2 M⊕ in the 30 < r < 50
AU interval (Jewitt et al. 1998), accretion models tell us that the primordial Kuiper
Belt had an initial mass of MKB ∼ 30 M⊕, and that collisions have since depleted
the Kuiper Belt mass by a factor of ∼ 150 (Kenyon and Luu 1999). In light of
this, the following considers the secular evolution of six model Kuiper Belts hav-
ing masses MKB = 0, 0.04, 0.2, 2, 10, and 30 M⊕. All rings are initially in circular
orbits coplanar with the invariable plane, and the giant planets have their current
masses and orbits.

2.2 Kuiper Belt Results

In our simulations where the Kuiper Belt mass exceeds MKB ≥ 0.04 M⊕, we find
that the giant planets launch spiral waves at the inner Kuiper Belt that propagates
outwards (see Fig. 2). These waves have the following properties:

•The wavelength is (Ward & Hahn 1998, Tremaine 2001)
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where n and s are the disk’s mean–motion and precession rates.

•These spiral waves propagate outwards with a velocity (Toomre 1969)
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where VK is the Kepler velocity. These waves reflect at the disk’s outer bound-
ary and return to the inner Kuiper Belt. Eventually a standing wave is estab-
lished that precesses in concert with Neptune’s longitudes, as anticipated by
Ward (2002). The time for waves to propagate a distant ∆r is
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• the mean inclination is ī ∼ 2(MKB/M⊕)−2/3 degrees while the instantaneous
i’s range over 0 . i . 2ī. Thus a lower–mass Kuiper Belt tends to be more
strongly disturbed, as is seen in Fig. 1 which shows that these waves could
have excited inclinations of i ∼ 10◦ in the current Kuiper Belt which has a mass
MKB ∼ 0.2 M⊕.

•The orbits of adjacent rings start to cross when the Kuiper Belt mass is less
than MKB . 2 M⊕, whereupon the model’s e and ω̃ evolution becomes suspect
(see Section 4).

Figure 1: The dots indicate the observed Kuiper Belt eccentricities e and inclina-
tions i while the curves indicate maximum e’s and i’s obtained by models having
a variety of Kuiper Belt masses MKB.

Figure 2: A snapshot of the MKB = 10 M⊕ system’s orbit elements. Greyscales
indicate fractional changes of ±20% in the disk surface density and ±1 AU in the
disk’s vertical displacement.

Figure 3: A snapshot of Saturn’s rings’ orbit elements that are forced by the satel-
lites and the Sun. Dots represent the inner satellites’ orbits. The dashed curves
indicate the threshold where Toomre’s gravitational parameter Q = cn/πGσ = 1.
Gravitational stability requires the particles random velocities c to exceed the
indicated threshold (Toomre 1964), so the B ring’s forced eccentricities will be
washed out by the particles’ random motions.

3 Saturn’s Rings
The rings model is also applied to Saturn’s rings to see if these waves might
propagate in this system. The model includes the perturbations from the major
satellites, the Sun, and Saturn’s oblateness. The rings’ initial orbit elements are
their forced values.

If these waves do indeed propagate in Saturn’s rings, we have not yet managed
to resolve them. Instead, the rings appear to behave as if they are massless. A
snapshot of the system’s forced orbits are shown in Fig. 3. Note that the forced
eccentricities in the B ring are smaller than the minimum required by gravitational
stability (e.g., they are below the Q = 1 threshold of Fig. 3), so these motions are
washed out by the particles’ random motions.

It is interesting to note that the A ring’s longitudes ω̃ precess in concert with
Mimas while the B ring precesses at Titan’s rate that is about 140 times slower.
However the radius where the rings’ precession rate ˙̃ω switches from Titan’s to
Mimas control, rc, drifts with time over 1.85 . rc . 2.05 Saturn radii. This inter-
val also spans the Cassini Division, which is indicated by the shaded region in
Fig. 4. Although this might be a mere coincidence of features, we are also ex-
ploring whether this break in precession rates near the A/B ring boundary might
also promote particle collisions that could sustain the broad gap at the Cassini
Division.

Figure 4: Saturn’s rings’ normal optical depth τ versus distance a (kindly pro-
vided by Mark Showalter/PDS Rings Node). The shaded region indicates the
zone swept by the ‘control radius’ rc, which is the radius where the rings’ peri-
apse precession rates change from the control of Titan to Mimas.

4 Model Limitations and Future Developments
The equations of motion for the system’s e and ω̃ evolution break down when
adjacent rings enter crossing orbits; this occurs when the Kuiper Belt mass is
MKB . 2 M⊕. The problem is that our current implementation does not account
for a ring’s finite thickness h that results from the particles’ dispersion velocities.
However this is readily handled by first softening the rings’ gravitational poten-
tials over the ring thickness h and then re–deriving the equations of motion (see
Tremaine 2001); this will be accounted for in the next generation of the rings
model. Note, however, that the i and Ω evolution reported here is still reliable
provided the disk scale height h is small compared to the radial wavelength λ.

Note also that the simple model employed here does not account for other
“long–period” terms in the equation of motion, as well the effects due to the
precession of Saturn’s pole, which contribute further to the rings’ forced motions
at Saturn (c.f., Burns et al. 1979).
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