Diagnosing Circumstellar Debris Disks

Joseph M. Hahn Space Science Institute Austin, TX

the edge-on debris disk orbiting β Pictoris, from Heap et al (2000)

The debris disk phenomenon (eg, Strubbe & Chiang 2006)

- unseen planetesimals in narrow ring or broad disk collide & generate dust
- radiation pressure or stellar wind lofts small micron-size dust out to $r \sim$ hundreds AU

AU Mic, from Fitzgerald et al 2007

• collisions among dust grains depletes disk

My interest here:

Are debris disks indicators of ongoing planet-formation? Or are they regions of planetesimal destruction?

- planetesimals are seeds of planets, which suggests planet-formation
- but debris disks are resupplied by collisional erosion of planetesimals, which can inhibit planet formation
- could be argued either way...

The model:

- the planetesimal disk is composed of rings that produce dust at various sites in the disk
- dust production rate is a power-law in grain size, $P(R) \propto R^{-q}$

Dust orbits are simple functions of grain size parameter β :

$$a(eta) = rac{1-eta}{1-2eta}r_p \quad ext{and} \quad e(eta) = rac{eta}{1-eta} \qquad ext{where} \quad eta = rac{ ext{rad. prs.}}{ ext{gravity}} \sim rac{1}{R_{ ext{microns}}}$$

Dust abundance $N_i(t)$ = number of grains of size R_i in orbit $a_i, e_i, \tilde{\omega}_i$ at time t obeys rate equation dN_i/dt = dust production rate - collisional destruction rate,

$$\frac{dN_i}{dt} = P_i - \sum_j \alpha_{ij} N_i N_j$$

where collision probability rate α_{ij} = function(dust sizes, orbits, and strength Q^*) detailed are in Hahn (2010).

that coupled system of rate equations is solved numerically for abundances $N_i(t)$,

providing dust collisional lifetimes $T_c(R)$,

and dust optical depth au(r) produced by narrow planetesimal ring or broad disk,

and disk surface brightness B(r)

Diagnosing the β Pictoris debris disk:

fitting model disk to optical HST observations (Golimowski et al 2006) requires:

- broad planetesimal disk, $75 \lesssim r_p \lesssim 150$ AU, comparable to what Wilner et al (2010) infer from mm observations
- heavy dust production, $\dot{M}_d \sim 10~{
 m M_{\oplus}}/{
 m Myr}$
- dust grains are probably icy & reflective I assumed $Q_s = 0.7$ (Saturn's icy rings), however darker $Q_s = 0.1$ dust would require $\dot{M}_d \uparrow \times 50$, because $B \propto Q_s \sqrt{\dot{M}_d}$
- a good fit also requires:

q=2.5 (shallower than Dohnanyi) strong dust, $Q^{\star}\sim 10^8$ ergs/gm, asymmetric light scatters, $|g|\simeq 0.7$.

red & blue curves are disk's optical surface brightness, black curve is best fitting model

Conclusions, assuming albedo $Q_s = 0.7$:

- dust mass is $M_{
 m dust}\sim 10$ lunar masses, similar to Holland et al (1998) from from sub-mm observations, total dust cross section is $A_{
 m dust}\sim 2 imes 10^{20}~
 m km^2$
- β Pic's age $t_{\star} \sim 10$ Mys implies a total planetesimal mass $\dot{M}_d t_{\star} \sim 100 \text{ M}_{\oplus}$ was lost due to collisional erosion, equivalent to 6 Neptunes! β Pic's planetesimal disk is (or was) very massive
- heavy planetesimal erosion in r > 75 AU zone may preclude any planet formation there
- however the recent recovery of β Pic b at $r \sim 10$ AU (Lagrange et al 2010) shows that the innermost part of this disk did successfully produce a planet

Lastly...

- model details and results are in Hahn (2010), reprint available
- debris-disk model is available online, written in IDL, google 'SSI' to find my homepage