
CHAPTER 6

LINDBLAD RESONANCES

still need to write intro paragraph

6.1 FOURIER EXPANSION OF THE PERTURBING POTENTIAL

The following will calculate the motion of a massless test particle in orbit about a primary

star, while the particle is also perturbed by a secondary planet’s Lindblad resonance.

The secondary’s mass is ms, so its gravitational potential is Φs = −Gms/∆ where

∆ = |r − rs| is the particle’s distance from the secondary, r is the particle’s position

relative to the primary, and rs is the secondary’s; see Fig. 6.1. The system is assumed

coplanar, and this problem simplifies further when the secondary’s gravitational potential

Φs is Fourierexpanded in the particle’s relative longitude ϕ = θ − θs, where θ and θs are

the particle’s and secondary’s longitudes measured from the x̂ axis. That expansion is Eqn.

(5.28), but note that the secondary’s potential is even in ϕ, that is, Φs(r, ϕ) = Φs(r,−ϕ).
Consequently, the ηm coefficients in the odd part of Eqn. (5.28) must be zero, and so the

Fourier expansion becomes

Φs(r, ϕ) =
1

2
φ0(r) +

∞
∑

m=1

φm(r) cos(mϕ). (6.1)

Note that this is a fairly general expansion, since it could also apply to a particle that is

instead orbiting in a disk galaxy while perturbed by a galactic bar, where ϕ would then be

the particle’s longitude relative to the bar’s axis.
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Figure 6.1 A massles particle is in orbit about a primary star of mass mp and is perturbed by a

secondary planet of mass ms. The system is coplanar, where r is particle’s position vector relative to

the primary, and rs is the secondary’s position vector relative to the primary. The particle’s relative

longitude is ϕ = θ− θs, where θ and θs are the particle’s and secondary’s longitudes measured from

the x̂ axis. The particle’s position relative to the system’s centerofmass (COM) is rcom, and rp is

the primary’s position relative to the COM.

To solve for the Fourier coefficient φm, multiply the above by cos(m′ϕ) and integrate

over −π ≤ ϕ ≤ π, which yields πφm′(r) on the righthand side, so the Fourier coefficient

φm′(r) is

φm(r) =
2

π

∫ π

0

Φs(r, ϕ) cos(mϕ)dϕ, (6.2)

where Φs = −Gms/∆ and the separation ∆ = |r − rs| = (r2 + r2 − 2rrs cosϕ)
1/2 =

rs(1 + β2 − 2β cosϕ)1/2 where β = r/rs. Inserting this into Eqn. (6.2) then provides

φm(r) = −
Gms

rs
b
(m)
1/2 (β) (6.3)

where the Laplace coefficient is again

b(m)
s (β) =

2

π

∫ π

0

cos(mϕ)dϕ

(1 + β2 − 2β cosϕ)s
(6.4)

(e.g., Eqn. 5.30).

6.1.1 the indirect potential

Note that the coordinate system adopted in Fig. 6.1 is noninertial, since the origin follows

the primary that is in orbit about the system’s COM. Consequently, this choice of origin also
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results in an additional acceleration that can be calculated from the gradient of what will be

called the indirect potential Φi. The particle’s equation of motion is Newton’s second law

of motion (Eqn. 1.18), r̈com = −∇(Φp +Φs), where r̈com is the particle’s position relative

to the system’s centerofmass (COM), which is an intertial coordinate system. However,

it is often convenient to use a primarycentered coordinate system like that shown in Fig.

6.1, which is not inertial. Nonetheless, Newton’s second law can still be adapted for use

in the noninertial frame, since r = rcom − rp, so r̈ = r̈com − r̈p = −∇(Φp + Φs) − r̈p

where r̈p = (Gms/r
3
s)rs is the primary’s acceleration due to the secondary’s gravity. That

acceleration can be written as the gradient of the indirect potential Φi = (Gms/r
3
s)r·rs,

which will be confirmed in problem 6.1. The particle’s equation of motion now resembles

Newton’s second law, r̈ = −∇(Φp +Φs +Φi) where

Φi =
Gms

r3s
r · rs =

Gms

rs
β cosϕ. (6.5)

The indirect potential is usually combined with the secondary’s potential, so that

Φs → Φs +Φi = −
Gms

∆
+
Gms

rs
β cosϕ. (6.6)

Note that the indirect potiential only contributes an m = 1 term in the Fourier expansion

of Φs, so Eqn. (6.3) is then rewritten as

φm(r) = −
Gms

rs

[

b
(m)
1/2 (β) − δm1β

]

, (6.7)

where the Kronecker delta δm1 is 1 when m = 1 and zero otherwise. Lastly, it should be

noted that the gradients in the above potentials should have been calculated with respect to

the COM coordinate rcom, but the same accelerations also result when calculating gradients

with respect to the primarycentered coordinate r.

The next Section will then show that each term in the Fourier expansion of Eqn. (6.1)

corresponds to a Lindblad resonance, which is a site where the particle’s response to the

secondary’s perturbations is large. However, these Lindblad resonances are usually spatially

segregated. When that is the case, then the particle behaves as if it were responding to a

single mth term in this Fourier expansion, which allows one to simplify Eqn. (6.1) as

Φs(r, ϕ) ≃ φm(r) cos(mϕ) = ℜe
[

φm(r)eim(θ−θs)
]

(6.8)

sinceϕ = θ−θs, and with complex notation invoked on the righthand side of this equation

for later convenience.

6.1.2 motion near a Lindblad resonance

The particle’s equation of motion r̈ = −∇(Φp + Φs), which has radial and tangential

components (Eqn. 5.1)

r̈ − rθ̇2 = −
∂

∂r
(Φp + Φs) ≃ −

∂

∂r

[

Φp + φme
im(θ−θs)

]

(6.9a)

and
1

r

d

dt
(r2θ̇) = −

1

r

∂

∂θ
(Φp +Φs) ≃ −

im

r
φme

im(θ−θs). (6.9b)

Note that the ℜe notation has been dropped from the above, so it is to be understood that

only the real parts of the following equations are to be preserved.
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The particle’s undisturbed state is presumed to be a circular orbit, r = r0. However the

secondary’s perturbation of the particle, which is assumed to be small such that |∇Φs| ≪
|∇Φp|, will cause the particle’s motion to deviate from a circular orbit such that

r(t) = r0 + r1(t) (6.10a)

θ(t) = θ0 +Ω0t+ θ1(t), (6.10b)

where θ0 is an arbitrary phase, Ω0 is the particle’s mean angular velocity, and |r1| ≪ r0
and |θ1| ≪ 1. The smallness of r1 and θ1 allows use to linearize the equations of motion,

which makes an analytic solution possible. The secondary’s orbit is assumed circular, so

its semimajor axis is rs = as, and its longitude is θs(t) = Ωst where Ωs is its orbital

angular velocity, with time t = 0 taken to be the time when the secondary crosses the x̂

axis. Consequenty, the phase that appears in Eqn. (6.9) ism(θ− θs) = mθ0+ωmt+mθ1,

where ωm = m(Ω0 − Ωs) is known as the Dopplershifted forcing frequency. However

we will only need this phase to lowest order in Eqn. (6.10), so

m(θ − θs) ≃ mθ0 + ωmt (6.11)

in the above. If we then use the particle’s specific angular momentum h = r2θ̇ in Eqn.

(6.9b), then

dh

dt
≃ −imφme

i(mθ0+ωmt) (6.12a)

so h(t) ≃ h0 −
m

ωm
φm ei(mθ0+ωmt) (6.12b)

when Eqn. (6.12a) is integrated with respect to time t, and h0 is an integration constant.

Since h = r2θ̇ ≃ r20Ω0 + 2r0Ω0r1 + r20 θ̇1, this means than

θ̇1 ≃ −
2Ω0

r0
r1 −

m

r20ωm
φme

i(mθ0+ωmt). (6.13)

Next, insert Eqns. (6.10) into the radial part of the equation of motion (6.9a), and expand

to first order in the small quantities, which yields

r̈0 + r̈1 +

(

∂Φp

∂r

∣

∣

∣

∣

r0

− r0Ω
2
0

)

+

(

3Ω2
0 +

∂2Φp

∂r2

∣

∣

∣

∣

r0

)

r1 ≃

−

(

∂φm
∂r

+
2mΩ0

r0ωm
φm

)
∣

∣

∣

∣

r0

ei(mθ0+ωmt) (6.14)

when Eqn. (6.13) is used to eliminate θ̇1 and ∂Φp/∂r is Eqn. (5.6a), and the |r0 indicates

that all quantities are to be evaluated at the particle’s mean distance r0. The particle’s

timeaveraged orbit is assumed to be static, so r̈0 = 0. Also note that the constant in the

first parenthesis must be zero, since all of the other terms in this equation are oscillatory.

This is the requirement for centrifugal equilibrium, which again provides the particle’s

mean angular velocity,

Ω2(r) =
1

r

∂Φp

∂r
, (6.15)
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where Ω0 = Ω(r0). The constant in the second parenthesis is

κ2(r) = 3Ω2 +
∂2Φp

∂r2
= 4Ω2 + r

∂Ω2

∂r
, (6.16)

where κ0 = κ(r0) is again the particle’s epicyclic frequency from Eqn. (5.13). The

coefficient in the right parenthesis is known as the secondary’s forcing function,

Ψm(r) = −
∂φm
∂r

−
2mΩ0

r0ωm
φm. (6.17)

With these definitions, the particle’s equation of motion simplifies to

r̈1 + κ20r1 = Ψm(r0)e
i(mθ0+ωmt), (6.18)

which is the equation for a forced simple harmonic oscillator.

The solution to Eqn. (6.18) is the sum of two parts, r1 = rfree + rforced. The free part

satisfies Eqn. (6.18) with the righthand set to zero, which according to Eqns. (5.14–5.15)

is rfree = −Rei(κ0t+ϕ) with an arbitrary phase ϕ now included in the solution. If there are

many particles orbiting at the resonance, then a convenient measure of their free motions is

their dispersion velocity c, which is their mean velocity relative to the local circular velocity

r0Ω0. Problem 6.2 shows that these quantities are related via c = fRΩ where f ∼ 1.

The particle’s forced solution to Eqn. (6.18) has the form rforced = −Rei(mθ0+ωmt);

inserting this into Eqn. (6.18) shows that the amplitude of the particle’s forced motion is

R(r) = −
Ψm

D(r0)
(6.19)

where

D(r) = κ2 − ω2
m (6.20)

is the particle’s distance from resonance in frequencysquared units. The remainder will

assume that the particle is so close to the resonance that its forced motion dominates over

the free part, i.e. |R| ≫ |R|, so that the free part may be neglected.

6.1.3 resonance location

A Lindblad resonance is a site where |D| ≪ Ω2, which makes the particle’s response |R|
large. Exact resonance r = rr is where D(rr) = 0, which is where κ = ǫωm where

ǫ = ±1, or

κ(rr) = ǫm[Ω(rr)− Ωs] (6.21)

where Ωs is the satellite’s orbital angular velocity. When the primary’s gravitational

potential is Keplerian, κ = Ω so Ω/Ωs = m/(m− ǫ) = (as/r0)
3/2 and

rr =
(

1−
ǫ

m

)2/3

as (6.22)

is the radius of the mth Lindblad resonance. But keep in mind that this resonance position

would be altered if the primary’s gravitational potential where nonKeplerian, such as for

an oblate planet; see problem 6.11.
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Figure 6.2 Vertical lines indicate the radii of the secondary’s mth inner and outer Lindblad

resonances (Eqn. 6.22) shown relative to the satellite’s orbit, which is also known at the corotation

circle (CC). Radial distance r increases to the right, and the primary is far to the left. Only the m ≤ 4

Lindblad resonances are labelled. Not shown is the m = 1 inner Lindblad resonance that lies at

rr = 0 according to Eqn. (6.22).

Resonances with ǫ = +1 are inner Lindblad resonances, since they lie interior to the

secondary’s orbit, while those with ǫ = −1 are outer Lindblad resonances. Figure 6.2

shows the relative radii of these resonances. Note that the m ≫ 1 Lindblad resonances

tend to accumulate at the satellite’s orbit r = as. That site is also known as the corotation

circle (CC), since a particle orbiting there will corotate with the secondary. Note, though,

that the results obtained above do not apply to a particle orbiting near the CC, since the

assumption of segregated resonances, e.g., Eqn. (6.8), does not apply there; see Fig. 6.2.

Note that the corotation circle is also a resonance, since that is where ωm = m(Ω−Ωs) is

small, which causes Ψm and thus R to be large. This resonance is known as the corotation

resonance.

6.1.4 forced eccentricity

The particle’s response R to the secondary’s resonant perturbations is only large when

orbiting near the resonance. This then allows one to Taylor expand D(r) about the

resonance so that

D(r0) ≃ (r0 − ar)
dR

dr0
= xD (6.23)

where

x =
r0 − ar
ar

(6.24)

is the particle’s fractional distance from resonance, and the constant

D =

(

r
dD

dR

)
∣

∣

∣

∣

r0

= 3ǫ(m− ǫ)Ω2
0 (6.25)

(see problem 6.4). Inserting Eqn. (6.7) into Eqn. (6.17) evaluated at resonance r = r0 then

provides the secondary’s forcing function

Ψm = ǫf ǫ
mµsr0Ω

2
0 (6.26)
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(see problem 6.5), where µs = ms/mp is the secondary’s fractional mass and

f ǫ
m = ǫβ2

∂b
(m)
1/2

∂β
+ 2mβb

(m)
1/2 − (2m+ ǫ)β2δm1 (6.27)

is a positive coefficient that depends on the resonance in question. The Laplace coefficient

b
(m)
1/2 (β) must be evaluated numerically, but that is easily done using the method described

in example 5.3, and with the derivative calculated via Eqn. (5.40a). Several of the f ǫ
m

coefficients are also tabulated in Table 6.1. as part of problem 6.6.

The particle’s forced eccentricity is Eqn. (6.19) divided by the particle’s mean distance

from the primary, which is

ef =

∣

∣

∣

∣

R

r0

∣

∣

∣

∣

=

∣

∣

∣

∣

ψm

x

∣

∣

∣

∣

(6.28)

where

ψm =
Ψm

rD
=

f ǫ
mµs

3(m− ǫ)
(6.29)

is a dimensionless version of the secondary’s forcing function. Keep in mind that the

particle’s forced eccentricity is quite distinct from the particle’s osculating eccentricity,

which is defined in Chapter 3.

6.1.5 streamlines, and the nonlinear zone

Now consider a scenario where there are many particles orbiting in a disk about the

primary, with that disk being perturbed by the secondary’s Lindblad resonance. Inserting

Eqns. (6.19), (6.11) (6.23) and (6.26) into (6.10a) also allows us to write a particle’s

trajectory as a function of longitude θ instead of time,

r(θ) = a+ sgn(x)|R| cosm(θ − θs), (6.30)

where sgn(x) = ±1 indicates the sign of x. The path traced by that particle is a streamline,

so the other particles’ streamlines thus describe that disk’s forced motions. A particle is

said to be in conjuction when it is at the secondary’s longitude θ = θs. So a particle orbiting

exterior to the Lindblad resonance, where x > 0, would also experience its maximal radial

displacement there since r(θs) = a + |R|, so the particle is also at its apoapse when in

conjunction. That particle’s streamline is then said to be apoaligned with the seconday.

Similarly, a particle orbiting interior to the Lindblad resonance has r(θs) = a− |R| when

in conjunction, so its streamline is perialigned.

However these signs reverse at longitudes θ = θc where m(θc − θs) = ±180◦ and

r(θc) = a− sgn(x)|R|. Thus a particle orbiting interior to the Lindblad resonance (x < 0)

will be at apoapse while a particle exterior to the resonance (x > 0) would be at periapse.

Consequently, those particles orbiting closer than one epicyclic distance from the resonance,

where |r(θc) − a| < |R(x)|, will experience radial excursions that carry them across the

resonance at certain longitudues, where they can collide or interact with particles on the

other side that are also trying to cross the resonance. The region around the resonance

where these interactions occur is known as the nonlinear zone, and the radial halfwidth of

this zone,

xNL =
√

|ψm|, (6.31)
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is obtained by requiring |r(θc) − a| = |R(xNL)| = r0e(xNL) at the zone’s edge. This

region is called the nonlinear zone because Eqn. (6.28) predicts that the particles in the disk

will have an eccentricity gradient, |ade/da| = |de/dx|, that is not small, which in turn will

result in large variations in the disk’s surface density; see problem 6.7 and Eqns. (6.70).

6.2 HIGHER ORDER LINDBLAD RESONANCES

The preceeding derivation assumed that the perturbing secondary’s orbit is circular. How

ever, when the secondary’s orbit is instead eccentric, an additional suite of resonances also

appear in the system. To calculate a particle’s response to these higherorder resonances,

assume that the secondary’s eccentricity es ≪ 1 is also small. Since the secundary’s orbit

is unperturbed, its motion is epicyclic, and its polar coordinates as a function of time are

Eqns. (5.16),

rs(t) = as(1− es cosκst) (6.32a)

θs(t) = Ωst+ 2es
Ωs

κs
sinκst (6.32b)

where time t = 0 is again chosen to be the moment when the satellite crosses the x̂ axis.

Inserting these into the mth Fourier component of the secondary’s gravitational potential,

Eqns. (6.7–6.8) and Taylorexpanding to first order in es (see problem 6.9), will show that

the satellite’s nonzero eccentricity splits the mth potential into three distinct components

such that

Φs(r, θ) →

+1
∑

k=−1

φkm(r0) cosm(θ − Ωmkt) (6.33)

where the k = 0 component of φkm is Eqn. (6.7) while the k = ±1 coefficients are

φkm = −
Gms

as
es

[

1

2

(

β
∂

∂β
+ 1 + 2km

Ωs

κs

)

b
(m)
1/2 (β)− β

(

1 + km
Ωs

κs

)

δm1

]

(6.34)

with rs → as and β → r0/as, where r0 is the perturbed particle’s mean orbit radius. The

potential components in Eqn. (6.33) rotate with an angular velocity

Ωmk = Ωs +
k

m
κs (6.35)

that is known as the pattern speed. According to Eqn. (6.34), the strength of the |k| = 1
component of the secondary’s potential is weaker than its k = 0 component by a factor es.

And if the secondary’s potential Φs had instead been expanded to all higher orders in es,

we would have found that φkm ∝ e
|k|
s cosm(θ−Ωmkt), with the summation in Eqn. (6.34)

also extended over ±∞ [1]. The index k will be used to distinguish between all of these

many potential components, with |k| also known as the order of the Lindblad resonance.

Comparing Eqn. (6.33) to Eqn. (6.8) shows that the perturbing potentials have the same

form when ωm is replaced by m(Ω − Ωmk); see Eqn. (6.11). Thus the solution for

the particle’s motion at a |k| = 1 resonance has the same form as the k = 0 solution,

Eqn. (6.19), provided ωm → m(Ω − Ωmk). The condition for exact resonance is then

D(r) = κ2−m2(Ω−Ωmk)
2 = 0, so the resonance is the site where κ = ǫm(Ω−Ωmk) =
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ǫm(Ω−Ωs)−ǫkκs is satisfied, where ǫ = ±1 again destinguishes between an inner and an

outer Lindblad resonance. If the system’s gravitational potential is Keplerian, then κ = Ω
and Ωs/Ω = (m− ǫ)/(m+ k) = (ar/as)

3/2, so the resonance radius ar is

ar =

(

1− ǫ/m

1 + k/m

)2/3

as. (6.36)

Evidently, every zerothorder (k = 0) Lindblad resonance is also straddled by a pair of

firstorder (k = ±1) resonances whose magnitude is weaker by a factor of es; see Fig. 6.3.

As Eqn. (6.36) shows, there is one firstorder resonance having k = ǫ that lies further away

from the corotation circle (CC) than the k = 0 Lindblad resonance; that site is known as an

external Lindblad resonance. Equation (6.36) also shows that there is a k = −ǫ resonance,

which is a coorbital Lindblad resonance since it lies on the corotation circle. Also note

that if the particle is orbiting at an m ≫ 1 Lindblad resonance, then the resonance lies at

ar/as ≃ 1− 2(ǫ+ k)/3m, so that resonance’s fractional distance from the secondary is

xL =
ar − as
as

≃ −
2(ǫ+ k)

3m
. (6.37)

However the zeroethorder and firstorder external Lindblad resonances are usually spatially

segregated, which then allows one to write Φs in Eqn. (6.33) as being due to a single

component such that

Φs(r, θ) ≃ φkm(r0) cosm(θ − Ωmkt) (6.38)

where θ = θ0 + Ω0t is the longitude of the particle’s guiding center. Lastly, note that

we could also have expanded the secondary’s potential Φs to first order in the particle’s

forced eccentricity ef , which would then have resulted in an additional suite of firstorder

Lindblad resonances that are described in problem 6.12.

As Fig. 6.2 shows, the highm resonances lie very close to the secondary’s orbit.

And if the secondary is orbiting in or near a broad disk of matter, such as a satellite

orbiting near a planetary ring, or a young planet that is still orbiting within a planet

forming circumstellar disk, then it is these nearby highm resonances that dominate the

secondary’s interaction with the disk. As Section 6.3.3 will show, the secondary’s zeroeth

order Lindblad resonances also facilitates an exchange of angular momentum and energy

between the secondary and the resonant diskmatter in a way that alters the secondary’s

semimajor axisa that can, for instance, drive the planetmigration that will be examined later

in Chapter 13. Other studies have also shown that the disk matter orbiting at a secondary’s

external Lindblad resonances tends to excite the secondary’s eccentricity, while matter

orbiting at the secondary’s external corotation resonances tends to damp its eccentricity,

all at comparable rates [1]. So it is these resonant disksecondary interactions that are very

important to studies of ringsatellite interactions, as well as the orbital evolution of young

extrasolar planets that are still embedded in their planetforming circumstellar disk.

6.2.1 Corotation resonances

A corotation resonance is a site where the secondary’s forcing function, Eqn. (6.17), is

singular, which occurs where ωm → m(Ω − Ωmk) = 0. The particle’s forced response,

Eqn. (6.19) gets large there because this potential component corotates with the particle’s

mean motion. When the system is Keplerian, Ω = κ, so the resonance conditionΩ = Ωmk
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Figure 6.3 This schematic shows the locations of the zeroeth (k = 0) and firstorder (|k| = 1)

Lindblad resonances (LRs) and corotation resonances (CR), relative to the corotation circle (i.e., the

secondary’s orbit); see Eqns. (6.36) and (6.39). The primary is far to the left and the secondary lies

on the corotation circle CC, and semimajor axis a increases to the right.

becomes Ωs/Ω = m/(m+ k) = (ar/as)
3/2, so the resonance has a semimajor axis

ar =

(

1 +
k

m

)−2/3

as. (6.39)

Evidently there are an infinite number of zeroethorder (k = 0) corotation resonances that

reside at the secondary’s orbit; these are also known as the coorbital corotation resonances.

But there is also an infinite number of highorder (k 6= 0) corotation resonance that lie

off the corotation radius, known as external corotation resonances. Also note that when

m≫ 1, the corotation resonance lies a fractional distance

xC =
ar − as
as

≃ −
2k

3m
(6.40)

away from the secondary. Comparison to Eqn. (6.37) shows that the secondary’s first

order |k| = 1 corotation resonances also overlap with its zeroeth order (k = 0) Lindblad

resonances when m≫ 1, which is also illustrated in Fig. 6.3.

6.2.2 Vertical resonances

Now calculate the particle’s linearized response to the vertical component of the secondary’s

gravity. As the following will show, the particle’s response to the vertical resonances has

many similarities to its response to the first order horizontal Lindblad resonances.

The equation for the particle’s vertical motion is z̈ = − ∂
∂z (Φp + Φs). Assume that the

particle’s vertical distance from the secondary’s orbit plane are small, which then allows

this to be Taylorexpanded in z, so ∂Φp/∂z ≃ ν2z where ν is the particle’s vertical

oscillation frequence from Eqn. (5.8); this frequency is simply the particle’s mean motion

when the primary is spherical or slightly faster when oblate (see Eqns. 5.18 and 5.52). If the

particle lies a horizontal distance ∆ away from the secondary whose polar coordinates are
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rs, θs, zs, then the secondary’s gravitational potential is Φs = −Gms/
√

∆2 + (z − zs)2

and its vertical accelerations is −∂Φs/∂z ≃ −Gms(z − zs)/∆
3 when their vertical

separation is small compared to their horizontal separation, |z − zs| ≪ ∆, so

z̈ = −(ν2 +Gms/∆
3)z −

Gmszs
∆3

(6.41)

but note that ν2 ≃ Gmp/r
3 ≫ Gms/∆

3 when the separation ∆ ∼ O(r) so the second

term in the parenthesis is negligible.

The secondary’s vertical motion is zs(t) = as sin is sin(νst) where as, is, νs are its

semimajor axis, inclination, and vertical oscillation frequency, with time t = 0 chosen to

be when the secondary is at its ascending node, Eqn. (5.16c). To calculate the particle’s

response to the secondary’s resonant forcing, Fourier expand the vertical acceleration

−
Gmszs
∆3

= −
Gmsas sin is sin(νst)

(r2 + a2s − 2ras cosϕ)3/2
=

1

2
f0(r, t) +

∞
∑

m=1

fm(r, t) cos(mϕ) (6.42)

where ϕ = θ − θs is the particle’s longitude relative to the secondary’s. Multiplying by

cos(mϕ) and integrating over all ϕ then yields the Fourier coefficient fm(r, t):

fm(r, t) =
2

π

∫ π

0

(

−
Gmszs
∆3

)

cos(mϕ) = −
Gms sin is

a2
b
(m)
3/2 (β) sin(νst)

= −2Am sin(νst),

(6.43)

where the factor Am = (Gms sin is/2a
2)b

(m)
3/2 (β) depends on the Laplace coefficient

b
(m)
3/2 (β) that is a function of β = r/as. So the secondary’s acceleration is

−
Gmszs
∆3

= −

∞
∑

m=0

2Am sin(νst) cos(mϕ)

= −

∞
∑

m=0

Am{sinm[θ − (Ωs − νs/m)t]− sinm[θ − (Ωs + νs/m)t]}

(6.44)

where the above assumes that the coordinate system is oriented so that the secondary’s

longitude of ascending node is zero. With Ω̄mk = Ωs + kνs/m being the vertical pattern

speed, the above can be written more compactly as

−
Gmszs
∆3

=
k=1
∑

k=−1

∞
∑

m=0

kAm sinm(θ − Ω̄mkt), (6.45)

which is the vertical analog of Eqns. (6.33–6.35). To lowest order the particle’s longitude

is θ ≃ θ0+Ωt so the argument of the sinusoid can be writtenm(θ− Ω̄mkt) ≃ mθ0+ ω̄mkt
where ω̄mk = m(Ω− Ω̄mk) is the vertical Dopplershifted forcing frequency.

Each term in the above sum corresponds to a vertical resonance, each of which are again

spatially segregated, so we only need to consider the particle’s response to a single resonant

term, and in this approximation Eqn. (6.41) for the particle’s vertical motion becomes

z̈ ≃ −ν2z + kAm sin(mθ0 + ω̄mkt). (6.46)
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The solution is again the sum of free and forced components,

z(t) = a sin i sin(νt + φ0) + Zf sin(mθ0 + ω̄mkt) (6.47)

where a, i, ν, φ0 are constants that describe the particle’s free motion, Eqn. (5.16c). Insert

ing this into Eqn. (6.46) then yield’s the amplitude of the particle’s forced motion,

Zf =
kAm

ν2 − ω̄2
mk

, (6.48)

so the vertical resonance is the site that satisfies ω̄mk = mΩ−mΩs − kνs = ǫν where as

usual ǫ = ±1. If the system is Keplerian then ν = Ω and the resonance condition becomes

Ωs/Ω(rV ) = (m− ǫ)/(m+ k) so the vertical resonance at r = rV is at

rV =

(

1− ǫ/m

1 + k/m

)2/3

as (6.49)

which is also where the first order horizontal resonances lie, Eqn. (6.36). Again, the k = ǫ
resonances are external vertical resonances since they lie interior (ǫ = +1) or exterior

(ǫ = −1) to the corotation circle, while the k = −ǫ vertical resonances are coorbital and

lie on the corotation circle at rV = as.

6.3 RESONANCE TRAPPING

When an orbiting particle is also subject to a dissipative force, its orbit will decay, and that

radial motion can deliver the particle to a secondary’s Lindblad resonance where it might

get trapped at the resonance if the dissipative force is sufficiently weak. For example,

when the orbit of a dust grain decays due to Poynting Robertson drag, trapping occurs

when the grain encounters a planet’s resonance whose perturbations also supplies the grain

with enough orbital energy and angular momentum to offset its losses due to drag, which

stabilizes and traps the grain at the resonance. And to illustrate the resonance trapping

phenomenon, the following will consider a related problem, a planetesimal whose orbit

decays due to aerodynamic drag with the solar nebula gas, which was considered earlier in

Section 3.2.2.

6.3.1 orbit decay due to nebula drag

The acceleration on the planetesimal due to nebula gas drag is ad = −|u|u/λd where

u = ṙ − vgas is the particle’s velocity ṙ relative to the gas vgas; see Section 3.2.2. But

this particular drag law is not linear in velocity, which makes the mathematics a bit more

difficult, so to sidestep that the following will replace the speed |u| with a constant value

〈u〉 that is averaged over the planetesimal’s orbit. Then ad → −〈u〉u/λd = −kdΩu where

the small dimensionless drag parameter kd = 〈u〉/λdΩ ≪ 1. This minor substitution

simplifies the mathematics without changing the nature of the problem.

The particle is also being perturbed by an orbiting secondary, so the particle’s polar

coordinates are written r(t) = r0 + r1(t) + rd(t) and θ(t) = θ0 + Ωt + θ1(t) + θd(t)
where r0, θ0 are its polar coordinates at time t = 0, r1 and θ1 are the particle’s oscillatory

displacements due to the secondary’s resonant forcing, and rd and θd account for its secular

drift due to the drag. The following will assume in advance that the planetesimal is already

trapped in a static orbit at the secondary’s resonance, so rd = 0 = θd. And since the

nebula gas’ circular velocity is vgas = (1 − η)rΩ θ̂, from Eqn. (3.39), the acceleration of

the planetesimal due to drag is ad = −kdΩṙ1 r̂−kdr0Ω(θ̇1 + ηΩ) θ̂.
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6.3.2 equations of motion

Equations (6.9) describe the particle’s motion in a gasfree environment, so adding ad to

the right hand side will account for the gas drag. The particle’s specific angular momentum

is h = r2θ̇ ≃ r20Ω + 2r0Ωr1 + r20 θ̇1 = h0 + h1(t) + hd(t) where h0 = r20Ω is the initial

angular momentum while h1 = 2r0Ωr1 + r20 θ̇1 accounts for the oscillations that are due to

the secondary’s resonant forcing while hd accounts for the losses due to gas drag. Inserting

h into the angular equation of motion (6.9b) yields

dh

dt
= ḣ1 + ḣd = −imφme

i(mθ0+ωmt) − kdr
2
0Ω(θ̇1 + ηΩ). (6.50)

The oscillatory and secular portions of the above equation must be satisfied separately, so

ḣ1 = −imφme
i(mθ0+ωmt) − kdr

2
0Ωθ̇1, which can be integrated in time so

h1(t) = −
m

ωm
φme

i(mθ0+ωmt) − kdr
2
0Ωθ1 = 2r0Ωr1 + r20 θ̇1. (6.51)

The particle’s oscillatory response has the form

r1(t) = −Re
[

Rei(mθ0+ωmt)
]

(6.52a)

θ1(t) = Re
[

Θei(mθ0+ωmt)
]

(6.52b)

so θ̇1 = iωmθ1 and Eqn. (6.51) can then be solved for θ1:

θ1(t) ≃
i

r20ωm

(

1 +
ikdΩ

ωm

)[

m

ωm
φme

i(mθ0+ωmt) + 2r0Ωr1

]

. (6.53)

Adding gas drag to the right hand side of Eqn. (6.9a) and expanding to first order in the

small quantities yields

r̈1 − r0Ω
2 − 2r0Ωθ̇1 − Ω2r1 = −r0Ω

2 − (κ2 − 3Ω2)r1 −
∂φm
∂r

ei(mθ0+ωmt) − kdΩṙ1,

(6.54)

and inserting Eqns. (6.52–6.53) into the above and solving for R yields the amplitude of

the particle’s forced radial motion,

R =
−Ψm + 2ikdmΩ2φm/r0ω

2
m

κ2 − ω2
m + ikd(1 + 4Ω2/ω2

m)Ωωm
≃

−Ψm

κ2 − ω2
m + 5iǫkdΩ2

(6.55)

since the particle is near the resonance where ωm ≃ ǫκ ≃ ǫΩ and drag is weak, kd ≪ 1.

The following will also need the real and imaginary parts of R, so

R =
−ΨmD + 5iǫkdΩ

2Ψm

D2 + (5kdΩ2)2
(6.56)

where D = κ2 − ω2
m is the frequency distance from resonance. So drag introduces an

imaginary component into the particle’s motion R. As the following will show, this causes

the particle’s response to be out of phase with the secondary’s forcing, which allows the

secondary to exert a net torque on the particle that can, if a certain criterion is satisfied, trap

the particle at the resonance.
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6.3.2.1 torque balance The particle’s orbit decay will be halted, and resonant trap

ping occurs, when the torque that the secondary exerts on the particle compensates for

the angular momentum losses that are due to gas drag. Equation (6.50) provides the

rate at which the particle’s specific angular momentum h evolves, and its secular part is

ḣd = −kdη(r0Ω)
2, which by the way appears unbalanced since there is no positive torque

here to trap the particle at the resonance. That is because the torque that the secondary

exerts on the particle is a secondorder effect and is why that term is absent from these

equations. Nonetheless one can still calculate that torque from these firstorder results.

The specific torque that the secondary exerts on the particle is

Ts = −(r×∇Φs) · ẑ = −
∂Φs

∂θ
= −Re

[

imφm(r)em(θ−θs)
]

= mφm(r) sinm(θ − θs).

(6.57)

Insert r = r0 + r1 and θ = θ0 +Ωt+ θ1 into the above and Taylor expand to first order, so

Ts ≃ mφm sinϕ+m2θ1φm cosϕ+mr1
∂φm
∂r

sinϕ (6.58)

where angle ϕ = mθ0 + ωmt. The particle’s displacement from circular motion is Eqn.

(6.52), so r1 = −Re(Reiϕ) = −Rr cosϕ+Ri sinϕ and θ1 = Re(Θeiϕ) = Θr cosϕ−
Θi sinϕ where the r and i subscripts indicate the real and imaginary parts of R and Θ.

But we are interested in the timeaveraged specific torque, which is obtained by averaging

Eqn. (6.58) over one forcing period 2π/|ωm|, which is

〈Ts〉 =
1

2
m2φmΘr +

1

2
m
∂φm
∂r

Ri (6.59)

since the only nonzero terms in the timeaveraged torque are proportional to 〈cos2 ϕ〉 =
1
2 = 〈sin2 ϕ〉.

Now note that Eqn. (6.55) implies |r1| ≫ |φm|/rΩ2 when the particle is near a resonance

so the r1 term in Eqn. (6.53) dominates and θ1 ≃ 2iΩr1/r0ωm so Θ ≃ −2iΩR/r0ωm and

Θr = 2ΩRi/r0ωm and Eqn. (6.59) becomes

〈Ts〉 = −
1

2
mΨmRi (6.60)

The imaginary part of R is from Eqn. (6.56), Ri = 5ǫkdΩ
2Ψm/[D

2 + (5kdΩ
2)2], so the

specific torque that the satellite exerts on the particle is

〈Ts〉 = −
5ǫmkdΩ

2Ψ2
m/2

D2 + (5kdΩ2)2
, (6.61)

which is maximal at resonance where D = 0. Note that the torque is positive and hence

resonance trapping is only possible at the ǫ = −1 outer Lindblad resonance.

The net timeaveraged specific torque on the particle is 〈ḣ〉 = ḣd + 〈Ts〉, where the

torque from the gas drag is ḣd = −kdη(rΩ)
2. These torques sum to zero when the particle

is trapped at the resonance, which provides an equation for the distance D from resonance

where the particle gets trapped,

D2 =
5mΨ2

m

2ηr2
− (5kdΩ

2)2. (6.62)
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Inserting D2 into Eqn. (6.56) then yields the trapped particle’s forced eccentricity (see

problem 6.13),

e =
|R|

r
=

√

2η

5m
. (6.63)

Interestingly, the trapped particle’s forced eccentricity is insensitive to quantities like the

satellite’s mass or the drag parameter kd.

6.3.2.2 trapping threshold In order for resonant trapping to occur, the D2 inferred

from Eqn. (6.62) must be positive so the drag parameter kd must be smaller than the critical

value, kd < kcrit, where

kcrit =

√

m

10η

|Ψm|

rΩ2
. (6.64)

Note that the drag parameter kd ∝ λ−1
gd where λgd ∝ Rp with Rp the planetesimal radius

(Eqn. 3.43), so the resonance trapping threshold kd < kcrit is equivalent to Rp > Rcrit

where

Rcrit ≃
ηCd

2m2µs

(

ρg
ρp

)

r (6.65)

where µs is the planet’s mass in units of the central star’s, ρg is the nebula gas density, and

ρp is the planetesimal’s density, and Cd is the dimensionless drag coefficient of Section

3.2.2.2; see problem 6.14. If one adopts the nebula parameters described in Section 3.2.2.3

for an Earthmass planet orbiting in the solar nebula at r = 1 AU, then the threshold for

resonance trapping isRcrit ∼ 6 km/m2. So if the planetesimal has a size smaller thanRcrit,

it will drift inwards and across the mth Lindblad resonance because the resonant torque

is weaker than the torque from nebula drag. But that planetesimal will still encounter a

sequence of higher m resonances that get progressively stronger, so resonance trapping

seems assured. But these results only apply when resonances are spatially segregated,

whereas Fig. 6.2 shows that the higherm resonances are very dense near the planet’s orbit,

and those overlapping resonances will result in chaotic orbital motion that in time will kick

the planetesimal into an orbit that crosses the planet’s orbit. Which would then result in

the planetesimal being accreted or else scattered away by the planet. The upshot is that

resonance trapping is only effective at trapping a planetesimal in a longterm stable orbit

when the planetesimal is trapped at the more distant lowm outer Lindblad resonances.

6.3.3 the secondary’s resonant torque on a disk

Equation (6.61) is the timeaveraged torque per mass that the secondary exerts on a sin

gle particle orbiting near its mth Lindblad resonance. Now assume that there are in

stead numerous particles present, spread out across a disk that has a mass surface den

sity σ, with all particles subject to the drag acceleration ad. The resonant torque that

the secondary exerts on an narrow annulus within that disk is dTm = 〈Ts〉2πσrdr =
−ǫm5kdΩ

2Ψ2
mπσr

2dx/[(xD)2+(5kdΩ
2)2]where r is the radius of the annulus, dr = rdx

its radial width, and D(x) = xD where x is the fractional distance from resonance. The

total integrated torque is

Tm =

∫

dTm = −
2αdmπσr

2Ψ2
m

D

∫ ∞

0

dx

x2 + α2
d

(6.66)
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where αd = 5kdΩ
2/|D| is another small dimensionless drag parameter. The integral

evaluates to π/2αd, so

Tm = −
mπ2σr2Ψ2

m

D
. (6.67)

This is the torque that the secondary exerts at its mth Lindblad resonance in a disk of

particles that are subject to a weak drag force having αd ≪ 1. Interestingly, this formula

will be recovered again in Section 12.4.4, which calculates the torque that a secondary

exerts when it launches a spiral density wave at its mth Lindblad resonance in the a disk;

see Eqns. (12.73–12.74).

And in problem 6.15 you will show that, when Eqn. (6.67) is summed over all of the

secondary’s resonances in the disk, you then recover the shepherding torque of Eqn. (4.42).

Problems

6.1 Confirm that the indirect potential satisfies ∇Φi = (Gms/r
3
s)rs.

6.2 Show that c = fRΩ.

6.3 Show that a planet’s mth Lindblad resonance lies a fractional distance

x =
r0 − rs
rs

≃ −
2ǫ

3m
(6.68)

away from the planet’s orbit when m ≫ 1, and that the distance between adjacent

resonances is

∆x ≃
2

3m2
. (6.69)

6.4 See Eqn. (6.25), and show that D = 3ǫ(m− ǫ)Ω2
0

6.5 Insert Eqn. (6.7) into Eqn. (6.17) and evaluate it at resonance to obtain the forcing

function that is given by Eqns. (6.26) and (6.27).

6.6 Write a computer program to evaluate the coefficients f ǫ
m numerically using Eqn.

(6.27), and calculate the m ≥ 8 values that are missing in Table 6.1.

6.7 A disk is perturbed by a secondary’smth Linblad resonance, which causes streamlines

in the disk to spread or contract radially. Use a massconservation arguement to show that

the perturbed disk’s surface density σ varies as

σ(a, θ) =
σ0

J(a, θ)
(6.70a)

where J(a, θ) =
∂r

∂a
= 1 + sgn(x)(∂e/∂x) cosm(θ − θs), (6.70b)

where σ0 would be the disk’s undisturbed surface density, and where the righthand side of

Eqn. (6.70b) assumes that the disk’s streamlines are either peri or apoaligned. Then show

that the fractional variations in the disk’s surface density are small in regions far from the

resonance’s nonlinear zone, where |x| ≫ xNL, and not necessarily small where |x| < xNL.

6.8 a.) A particle orbits near a secondary’s mth Lindblad resonance, where m ≫ 1.

The secondary’s function function, Eqns. (6.26–6.27), depends on the Laplace coefficient
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Table 6.1. coefficients fǫ

m evaluated via Eqn. (6.27)

m ǫ = +1 inner LR ǫ = −1 outer LR

1 — 0.857

2 1.500 4.968

3 3.091 6.567

4 4.689 8.167

5 6.290 9.769

6 7.892 11.37

7 9.495 12.97

8

9

10

b
(m)
1/2 (β). Show that

b
(m)
1/2 (β) ≃

2

π
K0(m|x|) =

2

π
K0(2/3) ≃ 0.4436, (6.71)

when m≫ 1, where β = 1 + x is the particle semimajor axis in units of the secondary’s,

x is the particle’s fractional distance from the secondary’s orbit, and K0 is the modified

Bessel function of Eqn. (A.25a). Hint: Note that β is nearly unity whenm≫ 1, so most of

the contribution to the integrand in Eqn. (6.4) occurs at angles where ϕ ≪ 1. This allows

one to extend the upper integrand to infinity, to replace β with 1 + x where |x| ≪ 1, and

cosϕ ≃ 1− ϕ2/2, which then yields Eqn. (6.71).

b.) Show that

∂b
(m)
1/2

∂β
≃

2ǫm

π
K1(2/3) ≃ 0.7168ǫm (6.72)

for a particle orbiting near the secondary’s m ≫ 1 Lindblad resonance, where K1 is the

modified Bessel function of Eqn. (A.25b).

c.) Show that

f ǫ
m ≃

2m

π
[2K0(2/3) +K1(2/3)] =

2km

π
(6.73)

in this case, where k is the constant that appears in Eqn. (4.29).

6.9 Derive Eqns. (6.33–6.35).

6.10 A particle like that described in Section 6.1.2 orbits near a secondary’s Lindblad

resonance. Show that the particle’s forced tangential displacement θ1 is

θ1 ≃ 2ǫ
Ω0

κ0
ef sinm(θ − θs) (6.74)

where ef is the particle’s forced eccentricity.
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6.11 A particle orbits a slightly oblate planet of radiusRp, and is perturbed by a satellite.

Show that position of the satellite’s zeroethorder Lindblad resonance,Eqn. (6.22), is shifted

radially outwards by

∆rr ≃
J2
2

(

m+ ǫ

m− ǫ

)

R2
p

rr
(6.75)

where J2 is the planet’s zonal harmonic.

6.12 a.) A particle is perturbed by a secondary whose orbit is circular. Taylorexpand

themth Fourier component of the secondary’s gravitational potential Φs to first order in the

particle’s forced eccentricity ef , and show that Φs also includes a firstorder term whose

Dopplershifted forcing frequency is ω′
m = 2m′(Ω − Ωs) where m′ is a positive integer.

Then show that this term results in a firstorder Lindblad resonance with semimajor axis is

ar =
(

1−
ǫ

2m′

)2/3

as, (6.76)

assuming that the primary’s potential is Keplerian.

b.) Comparing Eqn. (6.76) to (6.22) shows that this firstorder Lindblad resonance

can overlap the secondary’s zeroethorder resonance when the resonance indices obey

2m′ = m. However, this would only occurs when the primary’s gravitational potential

is truly Keplerian. If the primary were an oblate planet, then these 2m′ = m resonances

would be separated by a radial distance ∆ar. Derive an approximate expression for ∆ar
in terms of the resonance indices, J2, Rp, and ar.

6.13 Use Eqns. (6.56) and (6.62) to obtain the resonantly trapped particle’s eccentricity,

Eqn. (6.63).

6.14 For the resonance trapping scenario of Section 6.3, show that the planetesimal’s

speed relative to the gas is 〈u〉 ≃ erΩ when trapped at a lowm Lindblad resonance, where

e is Eqn. (6.63). Then insert Eqns. (6.26) and (6.73) into (6.64) to obtain the planetesimal

size threshold for resonance trapping, Eqn. (6.65).

6.15 a.) Show that Eqn. (6.67) becomes

Tm ≃ −
4ǫm2k2

3π
µ2
sσr

4Ω2 (6.77)

for the m≫ 1 Lindblad resonances that lie close to the secondary, where k in the above is

from Eqn. (6.73).

b.) Now consider a secondary that orbits a radial distance∆r exterior to a disk of surface

density σ. Show that the total torque that the secondary exerts on the disk is

T =

mmax
∑

m=1

Tm ≃ −
32k2

243π

∣

∣

∣

r

∆r

∣

∣

∣

3

µ2
sσr

4Ω2 (6.78)

where mmax is the highestm resonance in the disk. Then convince yourself that this is

−1× the shepherding torque that the disk exerts on the secondary, Eqn. (4.42), as expected.
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