
CHAPTER 12

SPIRAL WAVE THEORY

This chapter examines the excitation and propagation of spiral density waves in a circum­

stellar or circumplanetary disk. Spiral density waves are the disk’s natural response to

perturbations exerted by any planets or satellites that are orbiting in or near the disk. For

instance, recently­formed planets will excite spiral density waves at their Lindblad reso­

nances that lie in the planet­forming circumstellar disk. These waves can be quite important

because the perturber’s gravitational attraction for the wave also transmits angular momen­

tum from the perturber to the wave. That wave then propagates away from the resonance,

and that angular momentum is ultimately deposited in the disk as the wave is damped by

the disk’s viscosity or shocks in the wave. And should that angular momentum transport

between the disk and the perturber be vigorous enough, that can then drive a large scale

adjustment of both the perturber’s orbit and the disk’s matter distribution. Wave­action

could for instance cause the perturber’s orbit to migration over time, or the perturber might

instead carve open an annular gap about its orbit in the disk, due to the many resonances

there.

The following section will derive a linearized theory for the spiral waves that a perturber

can excite at one of its Lindblad resonances in the disk. Those results are then used to

calculate the torque that the disk and perturber exert on each other, which then determines

whether the perturber’s orbit will drift over time, or whether the perturber shepherds open

a gap in the disk.
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178 SPIRAL WAVE THEORY

12.1 EQUATIONS OF MOTION

This section derives the equations that govern the disk’s response to the perturbations that

are exerted by an orbiting secondary, both of which are in orbit about the primary mass

Mp whose gravitational potential is Φp = −GMp/r. The secondary’s potential is Φs, and

the disk’s gravitational potential is Φd. The disk’s equation of state is an ideal gas, so the

pressure in the disk is p = c2ρ where c the sound speed (see Section 3.2.2.1) and ρ is the

disk’s volume density. The disk is vertically thin such that c ≪ rΩ where rΩ is the circular

speed, and the disk’s surface and volume densities are related via ρ(r, θ, z) = σ(r, θ)δ(z).

12.1.1 the disk’s undisturbed state

If the disk were undisturbed, its volume density ρ would depend only on the radial coor­

dinate, perhaps as the power law ρ ∝ r−α. The disk’s motions would be circular so its

velocity v = rΩ θ̂ where Ω(r) is the disk’s angular velocity. Euler’s equation (10.12) for

a steady disk whose density is constant over time is (v·∇)v = −∇p/ρ−∇Φp where the

convective derivative (v·∇)v = −rΩ2
r̂ according to Eqn. (A.23). Solving for the disk’s

angular velocity then yields Ω2 = Ω2
0 − α(c/r)2 where Ω2

0 = (∂Φp/∂r)/r = GMp/r
3

would be the angular velocity squared if the disk were pressureless. So the disk will be

subkeplerian when α > 0 and the disk’s density decreases outwards, as per Section 3.2.2.1.

The disk’s vertical scale height h is related to the gas soundspeed via c = hΩ (see problem

3.9). Since the disk is thin, h ≪ r and the disk’s angular velocity is

Ω(r) ≃
[

1− α

2

(

h

r

)2
]

√

GMp

r3
. (12.1)

12.1.2 the perturber’s gravitational potential

The Fourier expansion of the secondary’s potential has the form Φs(r, θ) =
∑

mk φ
k
m(r)

cosm(θ − Ωmkt), where the indices m, k refer to specific Lindblad resonance (see Eqn.

6.33). But as long as the resonance indexm that is of interest here is sufficiently small, then

these resonances are spatially segregated such that one only needs to consider the disk’s

response to a single m, k term in the sum, so

Φs(r, θ) ≃ φs
mk(r)e

im(θ−Ωmkt). (12.2)

Keep in mind that the switch to complex notation means that only the real parts are to

be preserved in the following. In the above, the pattern speed Ωmk = Ωs + kκs/m is

the angular rate that the m, k Fourier component rotates over time (Eqn. 6.35) while Ωs

and κs are the secondary’s angular and epicyclic frequencies. Also recall that the Fourier

amplitudesφs
mk(r) ∝ e

|k|
s where es is the secondary’s eccentricity (see Section 6.2), which

is usually small, so only the strongest k = 0 Lindblad resonances are considered here.

12.1.3 linearized equations of motion

When the secondary’s perturbation of the disk is not too large, then linearized equations

of motion may be applied, which simplifies this problem considerably. In this case, the

disk’s surface density and velocity have the form σ = σ0 + σ1 and v = v0 + v1 where

σ0(r) is the disk’s unperturbed surface density and v0(r) = rΩ θ̂ is the disk’s unperturbed



EQUATIONS OF MOTION 179

circular velocity where Ω(r) is its angular velocity, while the disk’s perturbed velocity is

v1 = v1r r̂+v1θ θ̂. The secondary’s perturbation is sinusoidal in time and azimuth, so the

disk’s response is also sinusoidal and of the form

σ1(r, θ, t) = S(r)eim(θ−Ωmkt) (12.3a)

v1r(r, θ, t) = Vr(r)e
im(θ−Ωmkt) (12.3b)

v1θ(r, θ, t) = Vθ(r)e
im(θ−Ωmkt) (12.3c)

Φd(r, θ, t) = φd(r)e
im(θ−Ωmkt) (12.3d)

where the perturbations S, Vr, Vθ, φd are all complex quantities. The disk’s response will

be linear when its perturbed surface density |S| ≪ σ0 and its perturbed radial and tangential

speeds |Vr| and |Vθ| are both small compared to the disk’s undisturbed circular speed rΩ.

The disk’s linearized continuity equation (10.48) is∂σ1/∂t+∇·(σ0v1)+∇·(σ1v0) = 0,

and inserting Eqns. (12.3) into the continuity equation yields

iωmkS +
1

r

∂

∂r
(rσ0Vr) +

imσ0

r
Vθ = 0, (12.4)

where ωmk = m(Ω− Ωmk) is the Doppler­shifted forcing frequency of Section 6.1.2.

The linearized Euler equation for the disk is

∂v1

∂t
+ (v1·∇)v0 + (v0·∇)v1 = −∇

(

c2

σ0
σ1 +Φd +Φs

)

, (12.5)

which is from Eqn. (10.33b) where h1 = (dp/dρ)(ρ1/ρ0) = c2σ1/σ0 is the perturbation

in the disk’s enthalphy. The convective derivatives are

(v1·∇)v0 =

[

−ΩVθ r̂+
∂(rΩ)

∂r
Vr θ̂

]

eim(θ−Ωmkt) (12.6a)

and (v0·∇)v1 = Ω
[

(imVr − Vθ) r̂+(imVθ + Vr) θ̂
]

eim(θ−Ωmkt), (12.6b)

so the radial part of Euler’s equation is

iωmkVr − 2ΩVθ = − ∂

∂r

(

c2

σ0
S + φd + φs

mk

)

(12.7)

while the tangential part is

[

Ω+
∂

∂r
(rΩ)

]

Vr + iωmkVθ =
κ2

2Ω
Vr + iωmkVθ = − im

r

(

c2

σ0
S + φd + φs

mk

)

(12.8)

since Ω + ∂(rΩ)/∂r = κ2/2Ω (see Eqn. 10.58).

And lastly, the linearized Poisson equation is Eqn. (10.38c),

∇2Φd =
1

r

∂

∂r

(

r
∂Φd

∂r

)

+
1

r2
∂2Φd

∂θ2
+

∂2Φd

∂z2
= 4πGρ1. (12.9)
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12.1.4 the tight winding and WKB approximations

The following will consider spiral density waves that are propagating in either a circum­

stellar or a circumplanetary disk, and in both cases the disk’s mass is small relative to the

primary’s mass. The disk’s low mass then suggests that the radial scale λ over which the

disk responds collectively to any perturbations is likely to be small compared to the disk’s

physical scale r. λ is of course the radial wavelength of the wave, so a tightly­wrapped

spiral density wave having λ ≪ r also has a wavenumber |k| = 2π/λ such that |kr| ≫ 2π.

Note also that the disk potential Φd(r) will cycle rapidly across a small distance λ while r
changes little. Consequently the first derivative in Eqn. (12.9) is simply ∂2Φd/∂

2r, which

is of order Φd/λ
2 ∼ k2Φd. And since Φd ∝ eimθ (see Eqn. 12.3d), the second derivative

in Eqn. (12.9) is −m2Φd/r
2 which is small compared to the first since |kr| ≫ 2π. So the

linearized Poisson equation becomes

∂2Φd

∂r2
+

∂2Φd

∂z2
≃ 4πGσ1δ(z) (12.10)

since ρ1 = σ1δ(z). This assumption that λ ≪ r that entered into Eqn. (12.10) is known

as the tight­winding approximation.

Now recall the results of Section 10.3.2, which considered the disk’s gravitational

stability. It is shown there that the disk’s gravitational potential varies in the vertical

direction as Φd ∝ e−|kz|=−sz|k|z where sz = sgn(z), so the Poisson equation in the

|z| > 0 region is ∂2Φd/∂z
2 = k2Φd = −∂2Φd/∂r

2, which is satisfied by

∂Φd

∂r
= ikΦd, (12.11)

keeping in mind that the wavenumber k may be a function of r. In this case Eqn. (12.11)

may be solved via the WKB approximation that Wentzel, Kramers, and Brillioun first used

to solve the Schrödinger equation:

Φd(r, θ, t) = A(r, θ, t)e
i
∫

r

r0
k(r′)dr′

(12.12)

where k(r) is the wavenumber, A(r, θ, t) is the amplitude of the wave in the z = 0 plane,

and r0 in the above is an arbitrary reference radius. Comparison to Eqn. (12.11) shows

that the WKB approximation is a solution to the Poisson equation when the phase in Eqn.

(12.12),
∫

k(r′)dr′, varies much more rapidly than any variations in the wave amplitude

such that |∂A/∂r| << |kA|.
With this in mind, integrate Eqn. (12.10) vertically across −a < z < a where the small

distance a ≪ λ, and then take the limit a → 0, which yields

∂Φd

∂z

∣

∣

∣

∣

z=+a

− ∂Φd

∂z

∣

∣

∣

∣

z=−a

= −2|k|Φd = 4πGσ1 (12.13)

since Φd ∝ e−sz|k|z and ∂Φd/∂z = −sz|k|Φd (e.g. Section 10.3.2). Noting that kΦd =
−i∂Φd/∂r, the above becomes

σ1 = −|k|Φd

2πG
=

isk
2πG

∂Φd

∂r
(12.14)

where sk = sgn(k), or

Φd = −2πGσ1/|k|. (12.15)
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Now recall that σ1 = S(r)eim(θ−Ωmkt) (e.g. Eqns. 12.3), so inserting this into the above

then yields

S(r) =
isk
2πG

∂φd

∂r
. (12.16)

This is the linearized Poisson equation in the tight­winding limit after factoring out the

θ and t dependencies, and it provides a relatively simple relationship between the disk’s

perturbed surface density S(r) and the disk potential φd(r).
When the spiral wave is tightly wound, the disk’s perturbed surface density S(r) varies

rapidly over the small radial scale λ ≪ r, as will the perturbations in the disk’s velocities

Vr and Vθ . In this case, one can treat quantities that change slowly in r as constant, so

derivatives like that in the equation (12.4) become r−1∂(rσ0Vr)/∂r ≃ σ0∂Vr/∂r, and so

the continuity equation in the tight­winding limit simplifies to

iωmkS + σ0
∂Vr

∂r
+

imσ0

r
Vθ ≃ 0, (12.17)

and the radial and tangential parts of Euler’s equation become

iωmkVr − 2ΩVθ ≃ − ∂

∂r

(

φd + φs
mk +

c2

σ0
S

)

(12.18a)

κ2

2Ω
Vr + iωmkVθ ≃ − im

r

(

φd + φs
mk +

c2

σ0
S

)

(12.18b)

which can be solve for the velocities Vr, Vθ:

Vr = − i

D

(

ωmk
∂

∂r
+

2mΩ

r

)(

φd + φs
mk +

c2

σ0
S

)

(12.19a)

Vθ =
1

D

(

κ2

2Ω

∂

∂r
+

mωmk

r

)(

φd + φs
mk +

c2

σ0
S

)

(12.19b)

where D(r) = κ2 − ω2
mk is the wave’s distance from resonance in frequency­squared

units, Eqn. (6.20). Equations (12.16), (12.17), and (12.19) provide four coupled partial

differential equations for the wave’s four unknown quantities S, Vr, Vθ, and φd, and they

are solved below in Section 12.3. But before tackling that problem, the following derive

the waves’ dispersion relation next, which is a very useful equation that reveals many of

the spiral waves’ properties without having solved the equations of motion.

12.2 DISPERSION RELATION FOR SPIRAL DENSITY WAVES

Assume for now that the perturber has launched a spiral density wave at a resonance in the

disk, and lets focus on the downstream part of the wave that has propagated away from

resonance. Downstream and far from resonance, the wave is propagating via the disk’s

internal forces, which are pressure and/or self­gravity. Since the the secondary’s forcing

of the disk is unimportant downstream of the resonance, once can set φs
mk = 0 in the

above equations of motion. Inserting the WKB form into those equations will then yield

the dispersion relation for spiral density waves.
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Figure 12.1 This trailing m = 2­armed spiral pattern has a wavenumber k = 10/r0 where r0 is

the radius of the gray unit circle, and the leading m = 2 spiral has wavenumber k = −10/r0.

12.2.1 WKB approximation is a spiral

But first confirm that the WKB form can in fact represent a spiral. Note that Eqns. (12.12)

and (12.14) indicate that the perturbation in the disk’s surface density also has the WKB

form,

σ1(r, θ, t) = S(r)ei(mθ−mΩmkt) = A(r)e
i
[

∫

r

r0
k(r′)dr′+mθ−mΩmkt

]

(12.20)

where the surface density amplitude A(r) is again some function that varies slowly with

r. Now trace the spiral along a spiral arm. Advancing a small step along the spiral will

require a small radial step ∆r plus a small tangential step ∆θ. Since the spiral’s surface

density should be constant or nearly so along that step, then σ1(r + ∆r, θ + ∆θ, t) ≃
σ1(r, θ, t)e

i(k∆r+m∆θ), so the radial and tangential steps are related via ∆θ = −k∆r/m
when stepping along a spiral. Figure 12.1 shows that a spiral having a wavenumber k > 0
results in a trailing spiral in the sense that a positive radial step requires a negative azimuthal

step in order to stay on the spiral, while k < 0 results in a leading spiral wave.

12.2.2 dispersion relation

Now derive the dispersion relation for spiral density waves. The derivative of Eqn. (12.20)

in the tight winding approximation yields

∂S

∂r
≃ ikS. (12.21)

The disk’s other perturbed quantities also obey the tight winding approximation so∂Vr/∂r ≃
ikVr and the continuity equation (12.17) becomes iωmkS+(iσ0/r)(krVr +mVθ) ≃ 0 but

the second term is much larger than the third since |kr| ≫ 2π when the resonance index is

of order m ∼ 1, so the continuity equation becomes

Vr ≃ −ωmk

kσ0
S =

skωmk

2πGσ0
φd (12.22)
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since the Poisson equation (12.16) becomes

S(r) =
isk
2πG

∂φd

∂r
= −|k|φd

2πG
(12.23)

with sk = sgn(k). Inserting Eqns. (12.22–12.23) into Eqn. (12.19a) with φs
mk = 0 yields

Vr =
skωmk

2πGσ0
φd = − iωmk

D

(

∂

∂r
+

2mΩ

rωmk

)(

1− c2|k|
2πGσ0

)

φd ≃ kωmk

D

(

1− c2|k|
2πGσ0

)

φd

(12.24)

in the tight­winding limit, which simplifies to

D(r) = κ2 − ω2
mk = 2πGσ0|k| − c2k2. (12.25)

This is the dispersion relation for spiral density waves in a gravitating and pressure

supported disk. Note that when we write ωmk = mΩ−ω where ω = mΩmk is the forcing

frequency, then the dispersion relation is

D(r) = κ2 − (mΩ− ω)2 = 2πGσ0|k| − c2k2. (12.26)

which is equivalent to the dispersion relation for axisymmetic instabilities in a disk when

m = 0, Eqn. (10.59).

12.2.3 group velocity

Figure 12.2 plots the right­hand side of Eqn. (12.26) versus wavenumber |k|, which initially

grows linearly with small wavenumber |k| but then turns over as −|k|2 at larger wavenum­

bers. Of course the left­hand side of Eqn. (12.26) is the wave’s distance from resonance

in frequency­squared units, so the wavenumber |k| must adjust as the waves propagate

away and D(r) varies with distance from resonance (see Eqn. 6.20). Now suppose D(r)
takes some value D0. Figure 12.2 shows that in this case the dispersion relation yields

two possible solutions for the wavenumber: a smaller |k| solution that corresponds to long

waves (because wavelength λ ∝ |k|−1), and a larger |k| solution that corresponds to short

waves. .

Now recall Eqn. (12.20), which indicates that the wave’s surface density varies as

σ1 ∝ ei(kr−ωt). Appendix F.4 of reference [2] shows that a wave of this form propagates

radially at the rate vg = ∂ω/∂k, which is the waves’ group velocity; see that reference for

a rigorous derivation of vg . The forcing frequency ω is now to be regarded as a function

of wavenumber, so ∂D/∂|k| = 2ωmkskvg = 2πGσ0 − 2c2|k| where sk = sgn(k), so the

group velocity of spiral density waves is

vg = (πGσ0sk − c2k)/ωmk ≃ ǫsk(πGσ0 − c2|k|)/κ, (12.27)

where the right hand side assumes that the density waves remain in the vicinity of the

resonance where D(r) ≃ 0 and ωmk ≃ ǫκ with ǫ = +1(−1) for waves launched at an

inner (or outer) Lindblad resonance.

Since |vg| ∝ ∂D/∂|k|, the waves’ group speed is proportional to the slope of the curve

seen in Fig. 12.2. Note that D(r) has a local maximum, so the peak in Fig. 12.2 also

represents a turning point in the disk where long waves can reflect as short waves and vice

versa. That site in the disk where vg = 0 is where the density waves have wavenumber

kQ =
πGσ0

c2
, (12.28)
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Figure 12.2 The black curve is the dispersion relation for spiral density waves, Eqn. (12.26),

plotted versus wavenumber |k|. The vertical axis also represents the waves’ frequency distance from

resonance D(r) that is the left­hand side of Eqn. (12.26). Now consider a density wave whose

D(r) takes the value D0 as indicated by the dashed line. The values of |k| where the solid curve

intersects the dash are the solutions to the dispersion relation, with one solution corresponding to a

longer­wavelength solution with wavenumbers |k| < kQ where kQ = πGσ0/c
2 is the wavenumber

at the turning point, and the other a shorter­wavelength solution that has |k| > kQ.

and in problem 12.1 you will show that this corresponds to a wavelength

λQ ≃ 2πQh (12.29)

where Q ≃ cΩ/πGσ0 is disk’s stability parameter in a nearly keplerian disk (from Eqn.

10.61) and h = c/Ω is the disk’s vertical scale height.

Long waves that have wavenumber |k| < |kQ| can also be called gravity waves because

πGσ0 > c2|k| so self gravity is the dominant restoring force in the disk that allows the

density wave to propagate. Likewise, disk pressure is the dominant restoring force that

allows short waves to propagate, and that occurs when c2|k| > πGσ0. Note also that

the sign of the group velocity differs between gravity and pressure waves, so gravity and

pressure waves propagate in opposite directions through the disk.

12.2.3.1 long gravity waves A gravity–dominated (i.e. long) density wave will have

πGσ0 ≫ c2|k|, so the waves’ dispersion relation is D(x) ≃ 2πGσ0|k|. When the disk is

nearly keplerian, D(x) ≃ Dx = 3ǫ(m− ǫ)Ω2x (from Eqns. 6.23–6.25), so the wavelength

λ = 2π/|k| ≃ 4π2Gσ0/3(m − ǫ)Ω2|x| shrinks as the waves propagate away, where

x = (r − rr)/rr is the fractional distance from the resonance radius rr.

Note also that the dispersion relation for gravity waves requires D(x) > 0, so long

waves only propagate in regions of the disk where ǫx > 0. Thus waves launched at an

ǫ = +1 inner Lindblad resonance (ILR) propagate radially outwards while those launched

at an ǫ = −1 outer Lindblad resonance (OLR) propagate inwards. This is illustrated in

Fig. 12.3, which shows that long gravity­dominated density waves that are launched from a
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Figure 12.3 This schematic illustrates how the secondary ms launches long spiral density waves at

its mth inner Lindblad resonance (ILR) where ǫ = +1, and its mth outer ǫ = −1 Lindblad resonance

(OLR) in a gravity­dominated disk. As section 12.2.3.1 shows, long density waves only propagate

where D(x) > 0, which requires the sign of the group velocity to obey sgn(vg) = ǫ, so long density

waves propagate towards the corotation (CR) circle, which is the secondary’s orbit about the primary

Mp.

Lindblad resonance will propagate towards the the secondary’s orbit, which is also known

as the corotation circle. That figure also shows that the sign of these waves’ group velocity

is sgn(vg) = ǫ. But the group velocity for gravity waves, Eqn. (12.27), is vg = ǫskπGσ0,

so sk = sgn(k) must then be +1. This means that the density waves that a perturber

launches at its Lindblad resonances in a gravitating disk are all long trailing sk = +1
density waves, according to Section 12.2.1.

The most well­known examples of long spiral density waves are those that Saturn’s

satellites launch in Saturn’s main A ring, and a spacecraft image of one such density wave

train is shown in Fig. 12.4. This wave is launched at the satellite’s inner Lindblad resonance

in the A ring, and such waves propagate towards the perturber with a wavelength that shrinks

with distance from resonance. So the resonance lies in the lower quarter of this image, and

the waves are propagating radially outwards which in this image is upwards and towards

the satellite. Density waves in planetary rings are ultimately damped downstream by the

ring’s viscosity, usually after propagating a few tens of wavelengths, and wave damping

is also evident in Fig. 12.4, and the viscous damping of spiral density waves is assessed

below in Section 12.2.4.

Lasty, note that the above results might seem to break down for the m = 1, ǫ = +1
inner Lindblad resonance. This is because the approximation D(x) ≃ 3ǫ(m − ǫ)Ω2x is

not appropriate for this particular resonance. In a nearly keplerian system, the m = ǫ = 1
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Figure 12.4 Cassini spacecraft image of a spiral density wave that the Saturnian satellite Janus

excites at its m = 4 inner Lindblad resonance in Saturn’s main A ring. This resonance is also known

as Janus’ 4:3 resonance since the ratio of satellite and ring orbit periods is nearly such. In this closeup

view is of the ring’s sunlit side, Saturn is far away in the downward direction, the satellite is far away

upwards in the radial direction, and the ring particles’ orbital motion carries them in the horizontal

direction. Bright zones indicate crests in the density wave that are overdense with ring matter while

the darker regions are underdense. Of course the spiral density pattern turns about itself like a wound­

up watch spring, but the density crests appear straight rather than curved in this very close­up image.

This image is from the CICLOPS website at http://www.ciclops.org/view.php?id=4932.

resonance is instead a secular resonance, of the kind that is analyzed in Chapter 8. To

find the location of this particular resonance, one also has to account for how all of the

system’s perturbations (such as disk gravity or pressure, or the secondary’s gravity, or the

primary’s oblateness) alters a particle’s precession rate ˙̃ω. And in problem 12.2 you will

show that the frequency distance from the m = ǫ = 1 secular resonance resonance is

D(r) ≃ 2Ω(ω − ˙̃ω), so the D = 0 resonance is the site where a particle’s precession rate
˙̃ω(r), which is a function of radius r in the system, matches some slow disturbing frequency

ω that is often associated with the secondary’ precession rate.

12.2.3.2 short pressure waves A pressure dominated disk will have c2|k| ≫
πGσ0, so the dispersion relation for pressure waves is D(x) ≃ −c2|k|2 = 3ǫ(m−ǫ)Ω2x <
0. Thus pressure waves propagate in a direction opposite to that of gravity waves, i.e., they

propagate inwards from an ILR and outwards from an OLR; see Fig. 12.3. In other words,

short pressure waves propagate away from the corotation circle CR. The wave’s group

velocity is vg = −ǫskc
2|k|/κ, and this behavior also requires sk = +1, so short pressure

waves that are launched at a Lindblad resonance in the disk are also trailing sk = +1
waves. This condition is also known as the radiative boundary condition, because trailing

spiral density waves always propagate away from the resonance that launched them.

The wavelength of a pressure wave also shrinks with distance |x| from resonance, and

in problem 12.5 you will also show that the wavelength of a pressure wave is

λ =
2πh

√

3(m− ǫ)|x|
(12.30)

in a nearly keplerian pressure­dominated disk.

12.2.3.3 the Q barrier and the forbidden zone Analysis of the dispersion relation

(12.26) has shown that a perturber will launch a gravity­dominated long trailing spiral
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Figure 12.5 The orbit of the secondary m2 is indicated by the corotation circle (CR), and this

secondary also launched long trailing spiral density waves at its mth inner and outer Lindblad

resonances (ILR and OLR) in the circumprimary disk. Long spiral density waves propagate towards

CR until they reach the Q­barrier, which denotes the inner and outer edge of a forbidden zone in

which spiral density waves cannot propagate; instead, waves reflect at the Q­barrier and propagate

back towards (and possibly beyond) the Lindblad resonances.

density waves at its Lindblad resonance in the disk, and that these waves propagate towards

the corotation circle. The wavenumber |k| will increase as the wave propagates away from

resonance until |k| = kQ, which is the site in the disk where the wave’s group velocity

(12.27) changes sign and the wave reflects. The site where the wave reflects is known

as the Q­barrier because it depends on the disks’s stability parameter Q = cκ/πGσ0

from Eqn. (10.61). The frequency distance from resonance evaluated at the Q barrier

is D(kQ) = (πGσ0/c)
2 = (κ/Q)2 ≡ DQ. And when the disk is nearly keplerian,

D(xQ) ≃ xQD = DQ there. When D = DQ, the wave’s group velocity vg changes sign,

so the wave reflects at the fractional distance

xQ =
∆r

r
=

κ2

DQ2
≃ 1

3ǫ(m− ǫ)Q2
(12.31)

downstream of the resonance. The reflected wave then propagates back towards the

launching resonance as a short trailing pressure­dominate density wave.

Also keep in mind that for each m there is an inner and an outer Lindblad resonance.

Problem 12.3 also shows that each wave’s Q­barrier straddles the corotation circle, so there

is a forbidden zone surrounding the perturber’s orbit where density waves are excluded; see

Fig. 12.5 .

12.2.3.4 gravity versus pressure waves According to Eqn. (12.20), a spiral den­

sity has the form σ1 = Aeiφ where φ(r) =
∫ r

r0
k(r′)dr′ accounts for how the wave’s

phase changes with radius r. Evaluating the wave’s phase at the Q­barrier will indi­

cate whether the wave is gravity dominated or pressure dominated. To proceed, write

φ = sk
∫ xQ |k|rdx where sk = sgn(k) and differentiate Eqn. (12.26), noting that the left­

hand side is a function of distance x while the right­hand side is a function of wavenumber

|k|, so dx = D−1(2πGσ0 − 2c2|k|)d|k| when the disk is nearly keplerian. Inserting this
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into φ and evaluating that at theQ­barrier yields φ =
∫ kQ

0 skrD−1(2πGσ0−2c2|k|)d|k| =
sk(πGσ0)

3r/3Dc4 after inserting Eqn. (12.28); this is the phase of the wave as it hits the

Q­barrier. Note that if the magnitude of this phase is ≫ 2π at the Q­barrier then this is

a gravity­dominated wave, because the long gravity wave will have cycled through many

wavelengths before striking the Q­barrier. If however |φ| ≪ 2π at the Q­barrier, then the

long wave will already have reflected off the Q­barrier before completing even one cycle,

which is the signature of a pressure dominated density wave. Thus the quantity of interest

is

f =
|φ|
2π

=
r(πGσ0)

3

6π|D|c4 =
1

18π(m− ǫ)Q3(h/r)
(12.32)

If f ≫ 1 then the wave is gravity dominated, and one can then ignore the effects of disk

pressure since other effects will likely damp the wave before it hits theQ barrier. If however

f ≪ 1, then the spiral wave is pressure dominated, and one can ignore disk self­gravity.

Problem 12.4 will use f to confirm that the density waves launched in Saturn’s main rings

are gravity dominated, and that the density waves launched by a protoplanet orbiting in the

solar nebula are pressure dominated.

12.2.4 viscous damping of spiral density waves

Viscosity will damp spiral density waves, and accounting for that dissipation introduces

the additional terms

(

4

3
νs + νb

)

∇(∇ · v)− νs∇× (∇× v) (12.33)

to the right hand side of Euler’s equation. The disk’s kinematic shear viscosity is νs = η/ρ
where η is the shear viscosity and ρ is the disk’s volume density, and νb = ζ/ρ is the

kinematic bulk viscosity, and these new terms come from the Navier­Stokes equation

for a constant density disk, Eqns. (11.4–11.5). But note that this chapter is considering

linearized equations for which any density variations are small, so the use of Eqn. (12.33)

here is legitimate. The viscous disk’s velocity is v = vr r̂+vθ θ̂ where vr = (v0 +
Vre

im(θ−Ωmkt)) r̂ and vθ = (rΩ + Vθe
im(θ−Ωmkt)) θ̂ where v0 = −3νs/2r is the disk’s

steady inwards flow rate that is due to the disk’s shear viscosity (e.g. Eqn. 11.42 with

r ≪ rs).

In the tight winding limit the ∇ · v factor in Eqn. (12.33) is ∇ · v ≃ r−1∂(rvr)/∂r ≃
ikVre

im(θ−Ωmkt) so ∇(∇·v) ≃ −k2Vre
im(θ−Ωmkt) r̂ while ∇×v ≃ ikVθe

im(θ−Ωmkt) ẑ

so ∇× (∇× v) ≃ k2Vθe
im(θ−Ωmkt) θ̂, and the sinusoidal part of Eqn. (12.33) is

−
[(

4

3
νs + νb

)

k2Vr r̂+νsk
2Vθ θ̂

]

eim(θ−Ωmkt) (12.34)

to lowest order. These are then added to the right hand side of Euler’s equation (12.18)

whose radial and tangential parts become

iωmkVr − 2ΩVθ ≃ −∂φ

∂r
−
(

4

3
νs + νb

)

k2Vr (12.35a)

κ2

2Ω
Vr + iωmkVθ ≃ − im

r
φ− νsk

2Vθ (12.35b)
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where φ = φd+φs
mk + c2S/σ0. But this can be written in same form as Eqn. (12.18) with

iω1Vr − 2ΩVθ ≃ −∂φ

∂r
(12.36a)

κ2

2Ω
Vr + iω2Vθ ≃ − im

r
φ (12.36b)

where the new doppler­shifted frequencies ω1 = ωmk − i(4νs/3 + νb)k
2 and ω2 =

ωmk − iνsk
2 also have imaginary components. And when the procedure that was outlined

in Section 12.2 is again used to derive the dispersion relation for waves in a viscous disk,

which is the subject of problem 12.6, that results in a complex dispersion relation

κ2 − ω1ω2 = (2πGσoskk − c2k2)ω2/ωmk, (12.37)

so the wavenumber k is also complex. Since the wave amplitude varies as ei
∫

kdr, the

imaginary part of k thus damps the wave.

Problem 12.6 considers weakly damped spiral density waves that have (νs + νb)|k|2 ≪ Ω,

which means that the waves travel many wavelengths before damping due to viscosity. In

this weak damping limit, the dispersion relation (12.37) simplifies to

D(r) ≃ κ2 − ω2
mk ≃ 2πGσoskk − c2k2 − iνeωmkk

2 (12.38)

where νe = 7νs/3 + νb is the disk’s effective viscosity. Inserting k = kR + ikI into the

above shows that the real part of the complex wavenumber is stillD = 2πGσo|kR|−(ckR)
2

while the imaginary part is

kI(x) ≃
skǫνeκk

2
R

2πGσo − 2c2|kR|
(12.39)

(see problem 12.6).

Assessing viscous effects in a gravitating disk is straightforward since c = 0 and kR =
xD/2πGσ0 while kI = ǫνeκ(xD)2/(2πGσo)

3, so the imaginary part of the wavenumber

damps the wave by the factor e−
∫

x

0
kIrdx

′

= e−(ǫx/xν)
3

after traveling a fractional distance

x from the resonance, where the damping length scale is

xν =
2πGσo

(νeκrD2/3)1/3
(12.40)

in fractional units. This equation, when combined with observations of spiral density

waves in a planetary ring, can be used to determine the ring’s physical properties. For

instance the observed wavelength readily provides an estimate of the ring surface density

σ0 since λ = 2π/|kR| ∝ σ0, and that coupled with an observation of the wave’s damping

length scale xν yields the ring’s effective viscosity νe via Eqn. (12.40).

12.3 SPIRAL WAVE SOLUTION

The following calculates the amplitude of the density wave that an orbiting perturber can

excite in a disk, as well as the torque that the disk and the perturber exert on each other due

to the perturber’s gravitational attraction for the wave’s spiral density pattern. Chapter 13

will then show how these disk­perturber torques can also drive an early episode of planet

migration.
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12.3.1 gravitating spiral density waves

Solve for the amplitude of tightly­wound spiral density waves that a perturber launches at

its Lindblad resonance in a gravitating, inviscid, and pressureless disk. In the tight­winding

limit, the ∂Vr/∂r term in the continuity equation (12.17) is large in comparison to the Vθ

term so

S ≃ iσ0

ωmk

∂Vr

∂r
=

isk
2πG

∂φd

∂r
(12.41)

by the Poisson equation (12.16). Integrating in r then gives

Vr =
ωmk

2πGσ0
φd (12.42)

since the integration constant must be zero (why?) and sk = +1. The radial velocity is

Eqn. (12.19a) with c = 0 since the disk is pressureless so

Vr =
iωmk

D

(

− ∂

∂r
− 2mΩ

rωmk

)

(φd + φs) ≃
iωmk

D

(

−∂φd

∂r
+Ψs

)

(12.43)

in the tight­winding limit, where Ψs = −∂φs/∂r− 2mΩφs/rωmk is the satellite’s forcing

function, Eqn. (6.17). Equating Eqns. (12.42–12.43) then yields

∂φd

∂r
− iD

2πGσ0
φd = Ψs (12.44)

but D = Dx and ∂φd/∂r = r−1(∂φd/∂x) where x is the fractional distance from

resonance, so

∂φd

∂x
− iǫαxφd = rΨs, (12.45)

where the constant α = r|D|/2πGσ0 ≫ 1 (see Problem 12.7). In problem 12.8 you

will show that Eqn. (12.45) is easily solved using an integrating factor; see also [3]. That

solution is

φd(ξ) = ǫ

√

2π

α
rΨsHǫ(ξ) = ǫ

√

4π2Gσ0

r|D| rΨsHǫ(ξ) (12.46)

where ǫ = +1(−1) at an inner (outer) Lindblad resonance and the dimensionless wave

form Hǫ(ξ) is

Hǫ(ξ) =
eiǫξ

2

√
π

∫ ξ

−∞

e−iǫη2

dη (12.47)

where

ξ = ǫ

√

α

2
x = ǫ

√

r|D|
4πGσ0

x (12.48)

is the new distance from resonance. Hǫ(ξ) is a complex function of distance ξ, and it is

plotted in Fig. 12.6, which shows that the wave amplitude |Hǫ| → 1 far downstream of the

resonance where ξ ≫ 1 and |Hǫ| → 0 far away on the non­wave side where ξ ≪ −1.
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Figure 12.6 Thin black and grey curves give the real and imaginary parts of the dimensionless

waveform Hǫ(ξ) as a function of dimensionless distance ξ from resonance; see Eqns. (12.47–12.48).

These curves are for spiral density waves launched at an ǫ = +1 ILR, and the thick black curve is

the magnitude of this complex function |Hǫ(ξ)|.

Inspection of Eqn. (12.47) and Fig. 12.6 shows that the first wavelength is where ξ2 = 2π
or x =

√

8π2Gσ0/r|D|, and the physical length of the first wavelength can be written

λ = xr =

√

8πµd

3(m− ǫ)
r (12.49)

where µd = πσ0r
2/Mp is the normalized disk mass (see just below Eqn. 4.41). This result

will be confirmed in problem 12.9.

The variations in the disk’s surface density due to the wave is obtained from the Poisson

Eqn. (12.41), and dividing by σ0 then gives the fractional variation in the disk’s surface

density,

S(x)

σ0
=

i

2πGσ0r

∂φd

∂x
=

iΨs

2πGσ0

(

1 + ix
√
2παHǫ(ξ)

)

, (12.50)

where ∂φd/∂x was eliminated via Eqn. (12.45). Problem 12.10 also shows that the lead

coefficient Ψs/2πGσ0 ≃ 0.8ǫmµs/µd, which will be useful below.

Equation (12.50) shows that the wave’s fractional amplitude also grows with distance

x downstream of the resonance. Which will become a concern since if |S(x)/σ0| & 1
then the disturbance in the disk is no longer small and these linearized equations will have

broken down. And in problem 12.11 you will show that these waves go nonlinear after

traveling a fractional distance

xNL ≃ 0.4

µs

(µd

m

)3/2

(12.51)
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from resonance. Alternatively, the secondary can instead launch a wave that is nonlinear at

the outset at x = 0. This happens when the first term in Eqn. (12.50) exceeds unity, which

occurs when the satellite’s fractional mass is not much more than the disk’s normalized

mass, µs & 1.3mµd; see problem 12.12.

12.3.2 pressure waves

For spiral density waves propagating in an inviscid, pressure­supported, but non­gravitating

disk, the fluid disk’s motions are still governed by the continuity equation Eqn. (12.17) in

the tight­winding limit,

S ≃ iσ0

ωmk

∂Vr

∂r
. (12.52)

The disk’s radial velocity is again Eqn. (12.19a) but this time with the disk’s potential φd

set to zero, so

Vr =
iωmk

D

(

− ∂

∂r
− 2mΩ

rωmk

)(

φs
mk +

c2

σ0
S

)

≃ iωmk

D

(

Ψs −
c2

σ0

∂S

∂r

)

(12.53)

in the tight­winding limit. Inserting Eqn. (12.53) into (12.52) and replacing D = xD and

∂/∂r = r−1∂/∂x yields

S − c2

r2D
∂

∂x

(

1

x

∂S

∂x

)

=
σ0Ψs

x2rD . (12.54)

This can be expressed in an integrable form when writing S(x) in terms of a new function

z(x) that satisfies S = σ0(∂z/∂x) so that Eqn. (12.54) becomes

∂

∂x

[

z(x)− ǫβ

x

∂2z

∂x2

]

=
Ψs

x2rD (12.55)

where β = c2/r2|D|. This is integrated in x, so z− (ǫβ/x)(∂2z/∂x2) = −Ψs/xrD since

the integration constant must be zero at large |x|, and is rearranged as

∂2z

∂x2
− ǫx

β
z =

rΨs

c2
. (12.56)

Then change variables to y = ǫβ−1/3x so ∂2z/∂x2 = β−2/3(∂2z/∂y2) and Eqn. (12.56)

then resemble’s Airy’s equation with a driving term on the right hand side,

∂2z

∂y2
− yz = β2/3rΨs/c

2, (12.57)

whose solution is

z(y) =
πΨs

β1/3rD [iAi(y)− ǫGi(y)] , (12.58)

but see reference [5] for a more thorough treatment of the boundary conditions that are not

discussed here. Integral representations of the Airy functions Ai(z) and Gi(y) are given

in Eqns. (A.28)
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Figure 12.7 The upper thick black curve is the amplitude of a spiral density wave |S(y)| in a

pressure­supported disk, in units of πσ0Ψs/β
2/3r|D| (see Eqn. 12.59), while the narrower curves

are the real and imaginary components that are proportional to derivatives of Airy functions A′

i(y) =
∂Ai/∂y and G′

i(y) = ∂Gi/∂y, where y = ǫβ−1/3x is the distance from resonance defined in

Section 12.3.2.

The perturbation in the disk’s surface density due to this density wave is then

S(y) = σ0
∂z

∂y

∂y

∂x
=

πσ0Ψs

β2/3rD [iǫA′
i(y)−G′

i(y)] , (12.59)

where A′
i(y) = ∂Ai/∂y and G′

i(y) = ∂Gi/∂y are plotted in Fig. 12.7, as well as the wave

amplitude |S(y)|. Recall that pressure waves propagate away from corotation (Section

12.2.3.2 and Fig. 12.3) where y ∝ ǫx < 0 and the Airy functions are oscillatory, while

these functions tend to zero on the non­wave side of the resonance. That figure also shows

that the first cycle of the pressure waves occurs at |y| ≃ 4 = β−1/3λ/r, so the pressure

wave’s initial wavelength is

λ ≃ 4β1/3r = 4(c2/r2|D|)1/3r. (12.60)

Problem 12.14 will show that the wave’s downstream surface density varies as

|S(x)| =
√
πσ0Ψs

β3/4r|D| |x|
1/4 (12.61)

far from resonance where y ≪ −1.

And problem 12.17 will use the waves’ dispersion relation to show that the time for a

pressure wave to propagate a radial distance ∆r through the disk is

tp =
2rΩ

c

√

∆r

r|D| . (12.62)
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12.4 ANGULAR MOMENTUM TRANSPORT BY SPIRAL DENSITY WAVES

As the following will show, a perturber that excites a spiral density wave at its resonance in

a disk also deposits angular momentum there, which waves then transport away as the wave

propagates. But these density waves are ultimately damped to the disk, which deposits the

waves’ angular momentum content elsewhere in the disk. So the perturber and the disk

exert a torque on each another, and those torques are assessed below. These torques can

also drive planet migration and/or cause the perturber to shepherd open a gap in the disk,

and Chapter 13 will use the results obtained here to examine those phenomena further.

12.4.1 gravitational flux

The angular momentum that flows across a gravitating disk is partly due to the spiral

density pattern’s attraction for itself. The flux of angular momentum due to disk gravity is

Eqn. (1.42) whose radial component is Fg = rgrgθ/4πG where gr = −ℜe(∂Φd/∂r) =
−ℜe(ikΦd) is the radial acceleration due to disk gravity and gθ = −ℜe(∂Φd/∂θ)/r =
−ℜe(imΦd/r) is the tangential acceleration, so Fg(r, θ, z) = mkℑm(Φd)

2/4πG where

Φd is the disk potential. The disk’s gravitational angular momentum luminosity is the flux

Fg integrated across an infinite cylinder of radius r,

Lg(r) =

∫ π

−π

rdθ

∫ ∞

−∞

dzFg. (12.63)

This is the rate that the disk transmits angular momentum outwards and across this imaginary

cylinder via self gravity, and thus is the gravitational torque that the disk interior to r exerts

on the disk exterior to r. To evaluate this integral, recall that the disk potential has the form

Φd(r, θ, z, t) = φd(r)e
−sz |k|zeim(θ−Ωmkt) (12.64)

(see Eqn. 12.3d and note the discussion just below Eqn. 12.13). Inserting this into the above

and evaluating the integrals in Eqn. (12.63) is the subject of problem 12.15, which yields

Lg =
skmr|φd|2

4G
(12.65)

where sk = sgn(k).

12.4.2 advective flux

The advective angular momentum flux is due to the flow of disk matter. The surface density

of angular momentum in the disk is ℓ = σrvθ , so the advective angular momentum flux in

the radial direction is Fa = ℓvr where σ = σ0+ℜe[Seim(θ−Ωmkt] is the disk’s total surface

density, vr = ℜe[Vre
im(θ−Ωmkt] its radial velocity, and vθ = rΩ + ℜe[Vθe

im(θ−Ωmkt] its

azimuthal velocity, so the advective luminosity through a cylinder or radius r is

La(r) =

∫ π

−π

ℓvrrdθ =

∫ π

−π

σr2vrvθdθ (12.66a)

≃
∫ π

−π

[σ0r
2ℜe(Vre

imθ)ℜe(Vθe
imθ) + r3Ωℜe(Seimθ)ℜe(Vre

imθ)]dθ (12.66b)
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to lowest order in the small nonzero quantities, and with t set to zero in the above since it

is arbitrary.

But lets also consider the disk’s radial flux of matter, Fm = σvr, so the luminosity of

matter through radius r is

Lm(r) =

∫ π

−π

σvrrdθ ≃
∫ π

−π

[rσ0ℜe(Vre
imθ) + rℜe(Seimθ)ℜe(Vre

imθ)]dθ. (12.67)

This quantity must be zero since, if the disk is inviscid, there is no radial flow in the disk

and Lm(r) = 0. Note that the first term in Eqn. (12.67) is obviously zero, so the second

term must also integrate to zero. But the second term in Eqn. (12.66b) is proportional to

the second term in the above, so that integral is also zero. Thus

La(r) = σ0r
2

∫ π

−π

ℜe(Vre
imθ)ℜe(Vθe

imθ)dθ = πσ0r
2[ℜe(Vr)ℜe(Vθ) + ℑm(Vr)ℑm(Vθ)]

(12.68)

when the angular integration is performed; see problem 12.16. Further simplification is

straightforward but a bit laborious and as usual is left for problem 12.16 where you will

show that the above can be written

La = −mπσ0r
2k

rD

∣

∣φd + c2S/σ0

∣

∣

2
. (12.69)

If the disk is gravitating then S is related to φd via Eqn. (12.23) and the above becomes

La = −skmr

2G

(

1− c2|k|
πGσ0

)

|φd|2. (12.70)

But if the disk is non­gravitating, then the disk’s advective angular momentum luminosity

is Eqn. (12.69) with φd = 0, which becomes

La =
mπrc2

kσ0
|S|2. (12.71)

See problem 12.16.

12.4.3 total angular momentum flux

A gravitating disk’s total angular momentum luminosity is

L = Lg + La = −skmr

4G

(

1− c2|k|
πGσ0

)

|φd|2 = −skmr

4G

(

1− |k|
kQ

)

|φd|2 (12.72)

where kQ is the wavenumber at the turning point, Eqn. (12.28). The is the rate at which

spiral density waves in the disk transport angular momentum across a cylinder of radius

r. Note that L < 0 for trailing sk = +1 gravity waves that have |k| < kQ, so gravity

waves launched at a Lindblad resonance in the disk carry negative angular momentum. Or

in other words, gravity waves transport their angular momentum inwards through the disk

to smaller radii r.

If however the disk is non­gravitating, then the wave’s total angular momentum lumi­

nosity is just the advective part, Eqn. (12.71), which is the rate that pressure in the spiral

density wave communicates angular momentum across radius r.
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12.4.4 torque exerted on a gravitating disk

The square of the amplitude of a gravity wave is |φd|2 = 4π2Gσ0rΨ
2
s/|D|, from Eqn.

(12.46). If the wave is still far from the edge of the forbidden zone then |k| ≪ kQ and

Eqn. (12.72) becomes L = −mπ2σ0(rΨs)
2/|D|, so the density wave transports angular

momeuntum inwards across radius r. Now consider the wave that the perturbing secondary

in Fig. 12.3 excites at its ILR. That wave carries angular momentum inwards and towards

the ILR at the rate |L|, which is then communicated to the secondary via its gravitational

attraction for the wave there. So the spiral pattern at the ǫ = +1 ILR exerts a positive

torque Td,s = ǫ|L| on the secondary. Alternatively, the secondary exerts the torque

T = −Td,s = −ǫ|L| on the disk at its ILR. Likewise, density waves propagating inwards

from the OLR transport angular momentum inwards and away from the disk­matter at that

resonance, so the secondary must exert the positive torque T = −ǫ|L| at its ǫ = −1 OLR

in order to sustain those waves. Thus the torque that the secondary exerts at either of its

mth Lindblad resonances in a gravitating disk is

T = −ǫ|L| = −mπ2σ0r
2Ψ2

s

D . (12.73)

This is the Goldreich­Tremaine formula [4], and it figures prominently in studies of

disk­perturber interactions and theories of planet migration.

12.4.5 torque exerted on a pressure­supported disk

Inserting the pressure wave amplitude, Eqn. (12.61), into Eqn. (12.71) and using the

dispersion relation for pressure waves D = xD = −c2k2 (e.g. Eqn. 12.26 with G = 0) to

eliminate x and k then yields the luminosity of angular momentum transported by spiral

density waves in a pressure­supported disk,

L = La =
mπ2σ0(rΨs)

2

|D| . (12.74)

Since L > 0, pressure waves transport angular momentum radially outwards through the

disk, in the opposite direction as gravity waves. Pressure waves propagate away from

the corotation circle and ultimately damp their angular momentum content to gas disk,

so the perturber exerts a positive torque on the disk at its OLR and a negative torque

on the disk at its ILR. Interestingly, the torque that the perturber exerts on the disk,

T = −ǫ|L| = −mπ2σ0(rΨs)
2/D, is the same, regardless of whether the disk is pressure

or gravity dominated.

Problems

12.1 Show that when the disk is nearly keplerian, a density wave’s group velocity vg = 0
when they have wavelength λQ given by Eqn. (12.29).

12.2 Insert Eqn. (5.17) into Eqn. (12.26) and show that the frequency distance from the

m = ǫ = 1 resonance is D(r) ≃ 2Ω(ω − ˙̃ω) when the system is nearly keplerian, and

thus this resonance is the site r where ˙̃ω(r) = ω where |ω| ≪ Ω is some slow perturbing

frequency.

12.3 Show that in a gravitationally stable disk that is nearly keplerian, the radial distance

from a Lindblad resonance to the Q barrier is less than the distance from resonance to the
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corotation circle, and that all spiral density waves would hit a Q barrier before reaching the

corotation circle.

12.4 Calculate the f of Eqn. (12.32) for the solar nebula and for Saturn’s A ring, and

demonstrate that a Saturnian satellite will launch gravity­dominated spiral density waves

in the A ring, and that a protoplanet would launch pressure­dominated density waves in the

solar nebula.

12.5 Use the dispersion relation to derive the wavelength of spiral density waves in

a nearly keplerian pressure­dominated disk, Eqn. (12.30), and confirm that such waves

propagate away from the corotation circle.

12.6 Derive the complex dispersion relation for damped spiral density waves propagating

in a viscous disk.

a.) Combine the continuity equation with Poisson’s equation and Euler’s equation (12.36)

in the tight winding limit to obtain the complex dispersion relation for spiral density waves

in a viscous disk, Eqn. (12.37).

b.) Show that Eqn. (12.37) becomes Eqn. (12.38) when the disk is non­gravitating and

viscosity is weak, (νs + νb)|k|2 ≪ Ω.

c.) Show that the imaginary part of wavenumber k is Eqn. (12.39) when gravity waves are

weakly damped by viscosity.

12.7 Show that the α in Eqn. (12.45) is

α =
r|D|

2πGσ0
=

3(m− ǫ)

2µd
≫ 1 (12.75)

when the disk is nearly keplerian, where µd = πσ0r
2/Mp is the normalized disk mass of

Section 4.4.2.

12.8 Solve Eqn. (12.45) for the perturbation in the gravitating disk’s potential φd.

a.) Review the method of integrating factors, and show that the integrating factor for Eqn.

(12.45) is e−iǫαx2/2.

b.) Use this integrating factor to show that the solution to Eqn. (12.45) can be written

φd(x) = rΨse
iǫαx2/2

∫ x

c

e−iǫαy2/2dy (12.76)

where the integration limit c is chosen to satisfy the boundary condition, namely, that the

amplitude of the spiral density wave is zero far away on the non­wave side of the resonance.

c.) Use Eqn. (12.48) to recast Eqn. (12.76) in the form of Eqns. (12.46–12.47). Explain

how you chose c.

12.9 Derive Eqn. (12.49) from the condition ξ2 = 2π.

12.10 Show that the lead coefficient in Eqn. (12.50) is Ψs/2πGσ0 ≃ 0.8ǫmµs/µd when

the disk is nearly keplerian.
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12.11 The second term in Eqn. (12.50) will dominate over the first once the spiral density

wave has propagated a few wavelengths. Show that the wave will go nonlinear, |S/σ0| > 1,

once the wave has traveled a distance xNL given by Eqn. (12.51).

12.12 Show that spiral density waves launched by a secondary of fractional mass µs are

nonlinear at the x = 0 resonance when µs & 1.3mµd.

12.13 Show that the fluid disk’s motions far away and on the non­wave side of the res­

onance resembles the solution for an isolated particle orbiting near a Lindblad resonance,

Chapter 6.

a.) Show that Hǫ(ξ) → iǫ/2
√
πξ when ξ ≪ −1 and thus the wave surface density

S/σ0 → 0 far on the non­wave side of resonance, as expected.

b.) Insert this result into Eqn. (12.19a) to obtain the disk’s radial velocity Vr on the non­

wave side of the resonance. Then estimate the disk’s eccentricity there from the magnitude

of e ≃ |Vr/rΩ|, and show that e ∼ |Ψs/rDx|, which of course is the eccentricity of an

isolated particle near resonance, Eqn. (6.28).

12.14 Use the analysis of Airy functions in reference [1] to show that the magnitude of

the factor |iǫA′
i(y) − G′

i(y)| ≃ |y|1/4/√π in Eqn. (12.59) far downstream of resonance

where y ≪ −1, and then confirm the pressure wave amplitude, Eqn. (12.61)

12.15 Insert the wave potential, Eqn. (12.64), into Eqn. (12.63) and evaluate the integrals

there to obtain Eqn. (12.65), which is the luminosity of angular momentum that results

from the spiral wave’s gravitational attraction for itself.

12.16 Perform the angular integration to obtain the right hand side of Eqn. (12.68). Then

insert Eqns. (12.19) into (12.68) to obtain Eqn. (12.69), which is the spiral density wave’s

angular momentum luminosity far downstream of the resonance where the secondary’s

forcing is negligable. Then use the dispersion relation to obtain Eqns. (12.70–12.71).

12.17 Use the dispersion relation and the group speed for spiral density waves to calculate

the time for waves propagating in a pressure­supported disk to travel a radial distance ∆r
from resonance, Eqn. (12.62).
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