
CHAPTER 11

VISCOUS EVOLUTION OF A

CIRCUMSTELLAR DISK

The effects of the fluid’s viscosity is considered, and the NavierStokes equation for the

fluid evolution is then obtained. Angular momentum transport in a viscous circumstellar

disk is also examined, and the disk’s viscous evolution is studied in considerable detail.

11.1 NAVIERSTOKES EQUATION

Viscosity is the friction that tends to resist any shearing or compression in a flowing fluid.

These viscous forces also tends to smooth out gradients in the fluid’s density and velocity,

and it does so by transmitting momentum through the fluid in a way that reduces those

gradients. To examine this in detail, Euler’s equation is adapted so that it can be applied to

a viscous fluid.

Recall the results of Section 10.2.3, which showed that the fluid’s internal frictional

forces are accounted for by adding Eqn. (10.26) to the right hand side of Euler’s equation

(10.12), which in Cartesian coordinates is

∂vi
∂t

+

3
∑

j=1

vj
∂vi
∂xj

= −1

ρ

∂p

∂xi
− ∂Φ

∂xi
+

1

ρ

3
∑

j=1

∂σ′

ij

∂xj
, (11.1)

where the new term on the right is the gradient of the viscous stress tensor σ′

ij . This viscous

stress tensor is the flux density of momentum that is transported via the fluid’s viscosity.

So if there is a region where there is a spatial gradient in the fluid’s momentum flux density
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σ′

ij , then that region is also gaining or losing momentum and thus experiences an additional

acceleration ρ−1
∑

j ∂σ
′

ij/∂xj due to this viscous transport of momentum.

Note that the viscous stress tensor must be zero when the fluid has no relative motion, so

σ′

ij will be some function of the velocity gradients ∂vi/∂xk. Similarly, the viscous stress

tensor should be zero when the fluid is in uniform rotation; see problem 11.1. With these

constraints in mind, the viscous stress tensor can be written [4] as

σ′
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∂xk

(11.2)

where η is the fluid’s shear viscosity and ζ the bulk viscosity. Note also that the viscous

stress tensor is symmetric, σ′

ij = σ′

ji. Inserting this into Euler’s Eqn. (11.1) then yields the

NavierStokes equation
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. (11.3)

In general, the viscosity coefficients η and ζ can be functions of the fluid properties such as

pressure, temperature, and density, and thus cannot be taken out of the gradient operators.

Note that the viscous terms also require calculating second order spatial derivatives, which

can make this equation too complicated to be of much use. However Section 11.2.1 will

examine the viscous transport of momentum through a fluid, which can result in a much

simpler set of evolutionary equations.

Nonetheless, if the η and ζ are in fact constant, then the NavierStokes equation can be

written in the more compact vector form

∂v

∂t
+ (v·∇)v = −∇p

ρ
−∇Φ +

η

ρ
∇2v +

1

ρ

(

ζ +
1

3
η

)

∇(∇ · v) (11.4)

(see problem 11.2), where the vector Laplacian in the above can also be written

∇2v = ∇(∇ · v)−∇× (∇× v), (11.5)

which is
∑

j(∇2vj)x̂j in Cartesian coordinates. Note that if the fluid is also incompressible,

then ρ is constant and∇·v = 0 by the continuity equation (10.9). In this case it is convenient

to introduce the kinematic shear viscosity

ν =
η

ρ
, (11.6)

so the acceleration on an incompressible fluid element due to viscosity is simply ν∇2v

when ν is constant.

11.2 ANGULAR MOMENTUM TRANSPORT IN A VISCOUS DISK

Now examine the flow of angular momentum through a viscous circumstellar disk that is

in circular motion about a central star. The disk is thin and axisymmetric, so all quantities



ANGULAR MOMENTUM TRANSPORT IN A VISCOUS DISK 161

are functions of radius only, and the fluid velocity is v = vθ(r) θ̂. If ρv is the linear

momentum density at some site r in the fluid disk, then ℓ = r×ρv is the fluid’s angular

momentum density, which evolves at the rate ∂ℓ/∂t = r×∂(ρv)/∂t. Recall that the fluid’s

linear momentum density evolve at the rate given by Eqn. (10.22),

∂

∂t
(ρvi) = −∇ ·Πi − ρ

∂Φ

∂xi
(11.7)

where the vector Πi =
∑

j Πij x̂j is the flux density of the fluid’s ith component of

momentum that is formed from elements of the fluid’s momentum flux density tensor Πij ;

see Section 10.2.3. The disk is thin and axisymmetric, so we only need to calculate the rate

that the z component of angular momentum density evolves, which is

∂ℓz
∂t

= x
∂

∂t
(ρvy)− y

∂

∂t
(ρvx) = −x∇ ·Π2 + y∇ ·Π1 − xρ

∂Φ

∂y
+ yρ

∂Φ

∂x

= − [∇ · (xΠ2)−Π2 · ∇x] + [∇ · (yΠ1)−Π1 · ∇y]− ρ(r×∇Φ) · ẑ
(11.8)

after invoking the vector identity Eqn. (A.14). Note that r×∇Φ = 0 in an axisymmetric disk

that is a function of r only. Similarly, only the nonaxisymmetric part of Π1 and Π2 will

contribute to ∂ℓz/∂t. Also note thatΠ2 ·∇x−Π1 ·∇y = Π2 ·x̂−Π1 ·ŷ = Π21−Π12 = 0,

so the above simplifies to

∂ℓz
∂t

= −∇ · (xΠ2 − yΠ1). (11.9)

Now integrate Eqn. (11.9) over some volume V so that

∂

∂t

∫

V

ℓzdV
′ =

∂∆ℓz
∂t

= −
∫

V

∇ · (xΠ2 − yΠ1)dV
′ = −

∫

S

Fz · da′ (11.10)

where the divergence theorem, Eqn. A.24a, was used to convert the volume integral into a

surface integral and

Fz = xΠ2 − yΠ1 = (xΠ21 − yΠ11) x̂+(xΠ22 − yΠ12) ŷ (11.11)

is the flux density of angular momentum that is flowing through the area da′ = n̂ da′ on

surface S in Eqn. (11.10). And in problem 11.5 you will show that if the disk is inviscid

then the above simplifies to

Fz = ℓzv + rp θ̂ . (11.12)

This is the disk’s advective angular momentum flux, and it gives the rate per area at which

the inviscid fluid’s motion transports angular momentum through the disk.

But lets continue to consider a viscous disk for whichΠij = ρvivj+δijp−σ′

ij (see Eqn.

10.24), and recall that only the nonaxisymmetric terms contribute to the disk’s viscous

evolution. Since the disk is axially symmetric, terms due to motion and pressure have no

net effect. Consequently the Πij in the above can be replaced with −σ′

ij where

σ′

ij = η

(

∂vi
∂xj

+
∂vj
∂xi

)

(11.13)

since the
∑

k ∂vk/∂xk = ∇ · v terms in the viscous stress tensor (Eqn. 11.2) are zero in

an axisymmetric disk.



162 VISCOUS EVOLUTION OF A CIRCUMSTELLAR DISK

The above expression for the disk’s angular momentum flux densityFz is written in terms

of Cartesian coordinates, which is rather awkward for use in an axially symmetric disk.

To convert this to cylindrical coordinates, note that Cartesian and cylindrical coordinates

are related via x = r cos θ and y = r sin θ while the velocities are vx = −vθ sin θ and

vy = vθ cos θ. These are used in problem 11.3 to write the velocity gradients ∂vi/∂vj in

terms of cylindrical coordinates, such as

∂vx
∂x

= −r
∂Ω

∂r
sin θ cos θ, (11.14)

where Ω(r) = vθ/r is the fluid’s angular velocity. Inserting those velocity gradients, Eqns.

(11.61), into Eqn. (11.11) then yields the much more compact result that

Fz(r) = −ηr2
∂Ω

∂r
. (11.15)

If the disk is Keplerian, then ∂Ω/∂r < 0 andFz > 0, which means that the disk’s viscosity

transports angular momentum radially outwards through the disk.

11.2.1 angular momentum luminosity, and the viscous acceleration

Now imagine a cylinder of radius r that is coaxial with the disk. The integrated flux

of angular momentum that the disk transports across that imaginary cylinder is Lz(r) =
∫

A Fz(r)da where A is the area where the disk and the cylinder intersect. The disk has a

scale height h(r), which is the vertical height that the disk extends above/below the disk’s

midplane, so A(r) = 2πr2h. It is also reasonable to treat the disk’s volume density as

constant across the disk’s vertical column, so ρ(r, z) = σ/2h where σ(r) is the disk’s

surface mass density. Then

Lz(r) =

∫

A

Fz(r)da = FzA = −2πνσr3
∂Ω

∂r
. (11.16)

where ν = η/ρ is the fluid’s kinematic viscosity. And if the disk is in Keplerian rotation,

then ∂Ω/∂r = −3Ω/2r and Lz = 3πνσr2Ω. This is the disk’s angular momentum

luminosity, which is the rate at which the disk’s angular momentum flows across radius r.

This then is also the torque that the faster disk material orbiting just interior to r exerts on

the slower disk material that is just exterior, due to the viscous friction that is exerted across

that interface.

Now calculate the acceleration that a small fluid region experiences due to the disk’s

viscosity. Begin by considering a narrow annulus in the disk whose inner radius is r and

outer radius is r +∆r. The torque that is exerted on this annulus due to the fluid orbiting

interior to r is Lz(r), while the torque that that annulus exerts on the fluid just exterior to it

is Lz(r +∆r), so −Lz(r +∆r) is the torque that the exterior fluid exerts on the annulus.

So the net torque on that annulus is ∆T = Lz(r) − Lz(r +∆r) = −(∂Lz/∂r)∆r when

∆r ≪ r. That annulus has mass ∆m = 2πσr∆r, so the torque ∆T = ∆mraν where

aν =
∆T

r∆m
=

1

σr2
∂

∂r

(

νσr3
∂Ω

∂r

)

(11.17)

is the tangential acceleration on the fluid due to its viscosity. Note that the viscous terms

in the Navier–Stokes equation (11.3) will be equivalent to aν . Another useful quantity is



ANGULAR MOMENTUM TRANSPORT IN A VISCOUS DISK 163

the surface density of torque in this viscous disk, which is

ζ = σraν =
1

r

∂

∂r

(

νσr3
∂Ω

∂r

)

. (11.18)

This becomes ζ = −(3/2r)∂(νσr2Ω)/∂r if the disk is in Keplerian rotation. The following

will show how this torque also drives a slow radial flow of the disk’s fluid.

11.2.2 the disk’s viscous evolution

The following derives the equation that governs the disk’s viscous evolution over time.

These results are drawn from the review given in [6], while reference [5] provides an even

more comprehensive analysis of viscous disks.

The preceding section noted that the viscous torque will drive a radial flow, so the

fluid disk’s velocity becomes v(r, t) = vr r̂+vθ θ̂. Keep in mind that the preceding had

neglected the disk’s radial velocity vr, but those results will still be applicable when the

disk’s viscosity is sufficiently weak such that |vr| ≪ vθ , which is usually the case.

Now recall the mass continuity equation (10.9) for the disk’s surface density, ∂σ/∂t+
∇ · (σv) = 0, which becomes

∂σ

∂t
+

1

r

∂

∂r
(rσvr) = 0 (11.19)

for an axially symmetric disk that is a function of r only; see Eqn. (A.20a). Note that the

source term on the right hand side is zero, which indicates that mass is conserved and not

created or destroyed. Also keep in mind that σ and vr are both functions of radius r and

time t.
The surface density of angular momentum in the disk is ℓ = σrvθ = σr2Ω, and this

quantity also obeys a continuity equation ∂ℓ/∂t + ∇ · (ℓv) = ζ where ζ is the viscous

torque density, Eqn. (11.18). This time the source term on the right is nonzero because

angular momentum can flow into or out of a region due to the viscous torque that is exerted

by adjacent regions. For an axially symmetric disk, this equation becomes

∂

∂t
(σr2Ω) +

1

r

∂

∂r
(σr3Ωvr) =

1

r

∂

∂r
(νσr3Ω′). (11.20)

where Ω′ = ∂Ω/∂r. The first term on the left is r2Ω(∂σ/∂t) while the second term can be

written rΩ∂(σrvr)/∂r + σvr∂(r
2Ω)/∂r = −r2Ω(∂σ/∂t) + σvr∂(r

2Ω)/∂r when Eqn.

(11.19) is used to cancel out the ∂σ/∂t terms, which then yields the fluid’s radial velocity

vr(r, t) =
∂
∂r (νσr

3Ω′)

rσ ∂
∂r (r

2Ω)
. (11.21)

This is then inserted into Eqn. (11.19) to provide a single partial differential equation for

the disk’s surface density,

∂σ

∂t
= −1

r

∂

∂r

[

∂
∂r (νσr

3Ω′)
∂
∂r (r

2Ω)

]

, (11.22)

which is a diffusion equation for the disk’s surface density σ(r, t). Once Eqn. (11.22)

is solved, that result can be inserted into Eqn. (11.21) to obtain the disk’s radial velocity

vr(r, t). And if the disk is Keplerian, Ω =
√

GM/r3 and

∂σ

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r
(νσr1/2)

]

. (11.23)
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11.2.3 constant viscosity disk in Keplerian rotation

Now consider a Keplerian disk having a constant viscosity ν. Begin by solving Eqn.

(11.23) by separation of variables, which assumes that the disk’s surface density has the

form σ(r, t) = R(r)T (t). Insert this into the above and then divide by σ so that

1

T

∂T

∂t
=

3ν

rR

∂

∂r

[

r1/2
∂

∂r
(r1/2R)

]

. (11.24)

The left hand side of this equation is a function of time t only while the right hand side

is a function of r only. Both terms are a function of different independent quantities, so

both functions must be equal to some separation constant that will be written −λ. So the

solution to the timedependent part of Eqn. (11.24) is simply T (t) ∝ e−λt while R(r)
satisfies

∂

∂r

[

r1/2
∂

∂r
(r1/2R)

]

+ k2rR = 0 (11.25)

where the new separation constant is k2 = λ/3ν. One can manipulate this equation further

until it is in the form of Bessel’s equation, but it is easier to just type this equation into

your favorite symbolic mathematics software, to see a computer can find the solution. For

example, MAPLE will solve this equation via

eqn:= Diff(sqrt(r)*Diff(R(r)*sqrt(r), r), r) + k^2*r*R(r);

dsolve(eqn=0, R(r));

which yields

R(r) = Ar−1/4J1/4(kr) +Br−1/4Y1/4(kr) (11.26)

where the Jn and Yn are Bessel functions of the first and second kind of order n = 1/4,

and A and B are integration constants that are determined by boundary conditions.

The remainder will assume that the disk’s angular momentum surface density ℓ =
σrvθ ∝ σ

√
r is zero at the disk’s inner boundary at r = 0. To apply this boundary

condition, we need to know how ℓ ∝ R(r)
√
r behaves in the limit that r → 0, which is

easily assessed in MAPLE by expanding ℓ as a power series in r to order r2,

ell:= R(r)*sqrt(r);

series(ell, r, 2);

which yields ℓ = c1B+ c2(A+B)
√
r+O(r2) where c1 and c2 are numerical coefficients.

Consequently, ℓ → 0 as r → 0 requires the integration constant B = 0, so the disk’s

surface density σ = R(r)T (t) has the form

σ(r, t) ∼ Ae−3νk2tr−1/4J1/4(kr). (11.27)

Keep in mind that Eqn. (11.27) is just one of many particular solutions to Eqn. (11.25), each

of which are characterized by different values of the separation constant k, so the general

solution to Eqn. (11.25) is the integrated sum of all possible solutions

σ(r, t) = r−1/4

∫

∞

0

A(k)e−3νk2tJ1/4(kr)dk, (11.28)
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where the function A(k) must be chosen to agree with the system’s initial conditions. That

determination of A(k) will benefit from the orthogonality relation [3]

∫

∞

0

rJm(kr)Jm(k′r)dr = δ(k′ − k)/k, (11.29)

where δ(x) is the delta function of Eqn. (A.27), and the order of the Bessel function obeys

m > − 1
2 .

11.2.4 evolution of a viscous ring

Assume that all of the disk’s mass Md was initially concentrated in a circular ring of radius

R at time t = 0, so its initial surface density is also the delta function

σ(r, 0) =
Md

2πR
δ(r −R). (11.30)

To solve for A(k), insert σ(r, 0) into Eqn. (11.28) at time t = 0, multiply by r5/4Jm(k′r),
and then integrate that equation over all r. Integrating over the delta functions then isolates

A(k), which is

A(k) =
MdR

1/4

2π
kJ1/4(kR), (11.31)

so the viscous disk’s surface density is

σ(x, τ) =
Md

2πR2x1/4

∫

∞

0

se−τs2/4J1/4(xs)J1/4(s)ds (11.32)

where x = r/R is a dimensionless radial coordinate, τ = 12νt/R2 is the dimensionless

time, and s = kR is a dimensionless integration variable. Inspection of the table of integrals

in [2], Eqn. (6.633) there, will show that this rather complicated integral evaluates to

∫

∞

0

se−τs2/4J1/4(xs)J1/4(s)ds =
2

τ
e−(x2+1)/τI1/4(2x/τ), (11.33)

so the disk’s surface density simplifies to

σ(x, τ) =
Md

πR2

e−(x2+1)/τ

x1/4τ
I1/4(2x/τ) (11.34)

where I1/4 is the modified Bessel function. Problem 11.6 notes that this equation can be

problematic when the argument of the Bessel function is large, and you are asked to show

that

σ(x, τ) ≃ Md

πR2

e−(x−1)2/τ

x3/4
√
4πτ

(11.35)

early in the disk’s evolution when and where τ ≪ 2x.
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Figure 11.1 A fluid ring having an initial mass Md and radius R spreads radially over time due to

its constant shear viscosity ν. The fluid’s surface density is given by Eqns. (11.34–11.35), which is

plotted versus radial distance x = r/R at selected times time τ = 12νt/R2.

11.2.5 the viscous timescale

Figure 11.1 shows the viscous ring’s surface density σ(x, τ) as a function of distance x at

selected times τ . It is evident that time τ = 12νt/R2 ∼ 1 is the time for a narrow ring

to have spread into a broad disk of radius R, so the ring’s viscous spreading timescale is

simply

tν ∼ R2

12ν
. (11.36)

After this time, viscosity will have erased any evidence that this fluid might once have been

confined to a narrow ring. And in problem 11.7 you will consider the early evolution of an

initially narrow ring, and show that the time for it to spread a small radial distance ∆r is

also

tν ≃ ∆r2

12ν
, (11.37)

where ∆r ≪ R is the efold halfwidth of the ring’s surface density profile such that

σ(R ± ∆r, t) = e−1σ(R, t). Differentiating Eqn. (11.37) with respect to time tν yields

2∆rvr ≃ 12ν, so the fluid’s radial velocity at the ring edge where r = R±∆r is

vr ≃ ± 6ν

∆r
. (11.38)

See also problem 11.8.

11.2.6 angular momentum conservation

Figure 11.2 shows the evolution at later times τ & 1, when the fluid has spread into a broad

disk. Figures 11.1–11.2 indicates that much of the disk’s mass dribbles onto the central star
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Figure 11.2 A fluid ring having an initial mass Md and radius R spreads radially over time due to

its constant shear viscosity ν. The fluid’s surface density is given by Eqns. (11.34–11.35), which is

plotted versus radial distance x = r/R at selected times time τ = 12νt/R2.

over time, while some disk matter flows to larger radial distances. This is a consequence

of angular momentum conservation. Recall the boundary condition, which requires the

surface density of angular momentum ℓ = σr2Ω → 0 as r → 0. This is known as the

zerotorque boundary condition; since ℓ is always a constant zero at the disk’s inner edge,

this also implies that the central star does not exert a torque on the disk. And because there

are no other external torques on the disk, the disk’s total angular momentumL is conserved

such that

L =

∫

∞

0

2πrℓ(r)dr = MrR
2ΩR (11.39)

where ΩR is the angular velocity of the ring at time t = 0; see problem 11.9

11.2.7 radial evolution of a broad viscous disk

Figure 11.2 shows that at later times when τ ≫ 1, the disk at x ∼ 1 varies slowly with radial

distance x = r/R. The disk’s surface density is Eqn. (11.34), which may be simplified

further via [1] because the Bessel function there becomes I1/4(2x/τ) ≃ (2x/τ)1/4/Γ(5/4)
when its argument 2x/τ ≪ 1 is small. So at late times the disk’s surface density becomes

σ(x, τ) ≃ Md

πR2

e−(x2+1)/τ

Γ(5/4)τ5/4
(11.40)

where the gamma function evaluates to Γ(5/4) ≃ 0.9064.
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Equation (11.21) provides the disk’s radial velocity, which for a Keplerian disk having

Ω′ = −3Ω/2r becomes

vr = −3ν

2r



1 +

(

r2Ω
σ

)

(

∂σ
∂r

)

(

∂(r2Ω)
∂r

)



 = −3ν

2r

(

1 +
2r

σ

∂σ

∂r

)

(11.41)

since∂(r2Ω)/∂r = rΩ/2. According to Eqn. (11.40), the derivative∂σ/∂r = (∂σ/∂x)/R =
−2σx/τR, so the disk’s radial velocity becomes

vr(r, t) = −3ν

2r

(

1− 4x2

τ

)

= −3ν

2r

[

1−
(

r

rs

)2
]

(11.42)

where

rs(t) =
√

τR2/4 =
√
3νt (11.43)

is known as the stagnation point, which is the site in the disk where the fluid velocity is

zero. Note that the fluid interior to the disk’s stagnation point has vr < 0 while vr > 0 at

r > rs, so the disk flows away from its stagnation point.

The trajectory r(t) for a fluid element in the disk is obtained from the differential

equation dr/dt = vr = −3ν/2r + r/2t (but see also problem 10.1). To solve, move the

rightmost term to the left hand side and multiply by 2r/t to obtain t−1(dr2/dt)− r2/t2 =
d(r2/t)/dt = −3ν/t, which is easily integrated and yields

r2(t) = r20(t/t0)− 3νt ln(t/t0) = r2s0

(

t

t0

)

[

(

r0
rs0

)2

− ln

(

t

t0

)

]

(11.44)

where the initial condition r0 = r(t0) is the fluid parcel’s distance from the central star

at the initial time t0 and rs0 is the initial location of the disk’s stagnation point at time

t0. These trajectories are plotted in Fig. 11.3. The grey curve there shows the location

of the disk’s stagnation point rs(t) = rs0
√

t/t0 that steadily advances outwards across

the disk. As Fig. 11.3 shows, the stagnation point eventually sweeps sweeps across the

entire disk. This reverses the motion of all the outwardevolving disk parcels that started

at r0 > rs0, causing all portions of the disk to then evolve onto the central star after time

t⋆ = t0e
(r0/rs0)

2

. But do keep in mind that not all of the disk matter will be accreted. This

is due to the disk’s conservation of angular momentum, Eqn. (11.39), which implies that

a tiny sliver of disk matter must nonetheless evolve out to great distances, carrying with it

all of the disk’s angular momentum L.

11.2.8 steady disk evolution

Now consider a broad viscous disk that is in steady state in the region interior to its

stagnation point at r ≪ rs, which means that disk’s surface density in this region does not

change over time. The flow is inwards, so the rate that mass traverses radius r in the disk is

Ṁd = −2πσrvr, (11.45)

which is the disk’s accretion rate. Note that vr = −3ν/2r in this region (Eqn. 11.42), so

the accretion rate Ṁd is also a constant.
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Figure 11.3 Black curves show trajectories r(t) for various fluid parcels orbiting in a viscous

disk, Eqn. 11.44. Curves representing different disk parcels that start at various initial radii r0, with

0.5 < r0/rs0 < 3 where rs0 is the radius of the disk’s stagnation point at the initial time t0. The grey

curve shows how the disk’s stagnation point rs(t) = rs0
√

t/t0 advances across the disk over time,

which causes the initially outwardevolving trajectories to reverse their motion and evolve inwards.

The continuity equation for the surface density of the disk’s angular momentum ℓ =
σr2Ω is Eqn. (11.20). The first term there is zero when the disk is steady, so that equation

is now easily integrated which yields σr3Ωvr = νσr3Ω′ + c/2π where the integration

constant c(r) = −2πνσr3Ω′ + 2πσr3Ωvr is a constant function of distance r. Note that

the first term is the disk’s viscous angular momentum luminosity Lz , Eqn. (11.16), while

the second term becomes −r2ΩṀd, which is the rate of angular momentum transport due

to the disk’s radial flow. So the integration constant c(r) is

c(r) = Lz(r) − r2ΩṀd = 3πνσr2Ω− r2ΩṀd, (11.46)

which is the net rate that viscosity plus radial motion transmits angular momentum through

the disk. Now evaluate c(r) at the disk’s inner edge which lies at some small radial distance

r⋆. Recall the zerotorque boundary condition, which says that no torque is exerted on the

disk’s inner edge, so Lz(r⋆) = 0 there and thus c = −Ṁdr
2
⋆Ω⋆ where Ω⋆ is the angular

velocity at r⋆.

Inserting c into Eqn. (11.46) then yields a simple expression that relates the disk’s surface

density σ to its viscosity ν and its accretion rate Ṁd:

σ(r) =
Ṁd

3πν

(

1− r2⋆Ω⋆

r2Ω

)

=
Ṁd

3πν

(

1−
√

r⋆
r

)

. (11.47)

The radius r⋆ will be the site where the disk’s angular velocity Ω(r) must rapidly transition

from Keplerian rotation having Ω ∝ r−3/2 to the central star’s angular velocity, which is a

constant. This transition region is known as the boundary layer, and it is the narrow zone

between the stellar surface and the disk’s inner edge where Ω′(r⋆) and Lz(r⋆) are zero.
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Far from the boundary layer at r ≫ r⋆ the disk’s surface density is σ ≃ Ṁd/3πν and

its radial velocity is vr ≃ −3ν/2r at r ≪ rs. The timescale for a steady disk’s viscous

evolution is then

tν ≃ r

vr
≃ 2r2

3ν
, (11.48)

which is the timescale for viscosity to slowly drain a steady disk of its mass by dumping

it onto the central star.

11.2.9 α viscosity

The above shows that the pace of the disk’s evolution is governed by the disk’s viscosity

ν. Unfortunately, the precise nature of the physical process that generates a disk’s viscous

friction is not known. For instance, it is possible that a circumstellar disk is convecting in

the vertical direction, and that turbulence generated by those vertical motions is responsible

for the disk’s viscosity. Alternatively it is argued that a circumstellar disk is susceptible

to the magnetorotational instability (MRI), wherein the magnetic field in a partly ionized

disk is magnified by an instability that then drives turbulent motions within the disk. So

the suspicion is that some kind of turbulence is responsible for the disk’s viscosity, though

the details remain unclear.

Inspection of Eqn. (11.48) shows that the viscosity is the product of a velocity and a

scale length. Since turbulence appears to be the generator of disk viscosity, then the disk’s

sound speed c is likely the maximum speed at which this process operates. Similarly,

the largest length scale over which turbulence can operate in the disk is simply the disk’s

shortest dimension, which is the disk’s vertical scale height h. Noting that c and h are

related via c = hΩ, this then leads to the α viscosity law

ν = αch = αh2Ω, (11.49)

where all the unknown physical details are hidden within the dimensionless parameter

α < 1. This is also known as the Shakura and Sunyaev viscosity law, who first applied this

formula to accretion disks around black holes. Inserting this into Eqn. (11.48) then yields

α ∼ r2/h2tνΩ. A typical circumstellar disk orbiting a solar mass star has a radius r ∼ 50
AU, a fractional scale height h/r ∼ 0.1, and a lifetime of tν ∼ 106 yrs, which suggests a

typical value of α ∼ 5× 10−3.

11.3 ENERGY TRANSPORT IN A STEADY DISK

The disk’s inward flow implies a loss of orbital energy due to friction within the disk, and

this dissipation of energy also heats the disk. To calculate the rate of energy dissipation

within the disk, consider the fluid’s density of kinetic energy, e = ρv2/2. This quantity

evolves at the rate ∂e/∂t = ρv·(∂v/∂t). The NavierStokes equation (11.4) provides the

derivative

∂v

∂t
= −(v·∇)v −∇Φ− ∇p

ρ
+

1

ρ

3
∑

i=1

3
∑

j=1

∂σ′

ij

∂xj
x̂i, (11.50)

noting that the viscous acceleration (the right term in Eqn. 11.1) is instead written in terms

of Cartesian coordinates. The following will consider a steady disk, so the disk’s density ρ
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is constant over time and the disk behaves as if incompressible such that ∇·v = 0. In this

case the fluid’s energy evolves at the rate

∂e

∂t
= −ρv·[(v·∇)v] − v · ∇(ρΦ + p) +

∑

i,j

[

∂(viσ
′

ij)

∂xj
− σ′

ij

∂vi
∂xj

]

(11.51)

where the vi(∂σ
′

ij/∂xj) was replaced with ∂(viσ
′

ij)/∂xj − σ′

ij(∂vi/∂xj). Setting αj =
∑

i viσ
′

ij also allows the first double sum in Eqn. (11.51) to be written as
∑

j ∂αj/∂xj =
∇·α where the vector α has Cartesian components αj =

∑

i viσ
′

ij . Problem 11.11 then

uses a number of vector identities to show that ∂e/∂t has the form

∂e

∂t
= −∇·Fe + δ (11.52)

where

Fe =

(

1

2
ρv2 + ρΦ+ p

)

v −α (11.53)

is the fluid’s energy flux density and

δ = −
∑

i,j

σ′

ij

∂vi
∂xj

= −1

2

∑

i,j

σ′

ij

(

∂vi
∂xj

+
∂vj
∂xi

)

= −1

2

∑

i,j

η

(

∂vi
∂xj

+
∂vj
∂xi

)2

(11.54)

is the fluid’s dissipation density.

To illustrate the meaning of these quantities, integrate Eqn. (11.52) over some volume

V and apply the divergence theorem so that

∂

∂t

∫

V

edV = −
∫

S

Fe·da+

∫

V

δdV. (11.55)

This shows that Fe·da is the rate that energy is transported across area da on the surface

S that bounds volume V , while δ is the disk’s three dimensional dissipation density. To

get the two dimensional dissipation that is more appropriate for a thin disk, integrate Eqn.

(11.54) through the disk’s vertical column, which yields

d =

∫

δdz = −1

2
νσ
∑

i,j

(

∂vi
∂xj

+
∂vj
∂xi

)2

= −νσ(rΩ′)2 (11.56)

when Eqns. (11.61) are used to write d in terms of cylindrical coordinates; see problem

11.12. This is the rate per area that a patch in the disk is losing kinetic energy due to viscous

friction. Hence −d is the rate that the molecules in the disk are heated as viscous friction

converts the disk’s ordered orbital energy into a disordered form of energy. Of course, the

disk will then radiate that heat into space, which is assessed below.

11.3.1 disk radiation

The viscous dissipation in a Keplerian disk is

d = −9

4
νσΩ2 = −3GM⋆Ṁd

4πr3

(

1−
√

r⋆
r

)

. (11.57)
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where M⋆ is the mass of the central star and Ṁd is the disk’s mass accretion rate. This

energy is converted into heat in the disk which is then radiated into space. The total

luminosity of the disk’s radiation is

Ld =

∫ rout

r⋆

d(r′)2πr′dr′ ≃ GM⋆Ṁd

2r⋆
(11.58)

where rout ≫ r⋆ is outer edge of where the disk is still steady. So by measuring a disk’s

accretion luminosity Ld one can infer the disk’s accretion rate Ṁd, which is also related to

the combination σν via Eqn. (11.47).

Consider an annulus in the disk of area δA. That annulus generates heat in the disk at

the rate δA|d|, but both sides of the disk will radiate that heat at the rate 2δAσsbT
4 where

σsb is the Stefanâ^Boltzmann constant, so the temperature T (r) of an annulus of radius r
is

T 4(r) =
|d|
2σsb

= −3GM⋆Ṁd

8πσsbr3

(

1−
√

r⋆
r

)

, (11.59)

assuming that the central star does not contribute to any significant heating of the disk.

The monochromatic intensity of the radiation emitted by an annulus in the disk isπBλ(T )
whereBλ(T ) is Plank’s blackbody law and πBλ is the rate per area per wavelength interval

that the disk emits thermal energy of wavelength λ. So the disk’s thermal spectrum, which

is rate that the viscous disk radiates energy of wavelength λ, is the disk integral

I(λ) =

∫ rout

r⋆

2π2Bλ[T (r
′)]r′dr. (11.60)

Figure 11.4 illustrates this concept with the spectrum of the young star GM Aurigae, whose

spectral energy distribution shows the classic signature of a circumstellar disk, which is an

excess of thermal radiation at infrared and longer wavelengths (which is the white curve in

Fig. 11.4) that is not be accounted by the star’s own blackbody radiation (black curve).

Problems

11.1 A viscous fluid is flowing in uniform rotation about rotation axis ω = ωẑ where ω
is the fluid’s constant angular rate of rotation, so the uniformly rotating fluid’s velocity is

v = ω × r. Show that this fluid’s viscous stress tensor σ′

ij = 0.

11.2 Show that Eqn. (11.4) follows from Eqn. (11.3) when the viscosity coefficients η
and ζ are constant.

11.3 Consider the axisymmetric fluid disk of Section 11.2 and show that the disk’s

velocity gradients are

∂vx
∂x

= −r
∂Ω

∂r
sin θ cos θ = −∂vy

∂y
(11.61a)

∂vx
∂y

= −∂vθ
∂r

sin2 θ − Ωcos2 θ (11.61b)

∂vy
∂x

=
∂vθ
∂r

cos2 θ +Ωsin2 θ. (11.61c)

Then insert these into Eqn. (11.11) to obtain Eqn. (11.15).
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Figure 11.4 The spectral energy distribution (SED) for GM Aurigae, which is a relatively young

million yearold star that also has a circumstellar disk. The black curve shows the star’s contribution to

the system’s SED, whose shape at wavelengths λ . 5µm is a blackbody with temperature T⋆ = 3970
K. The white curve shows a model that is fit to the excess radiation at longer wavelengths, which are

the data points in the above. The model’s agreement with the data indicates that the circumstellar

disk has an inner radius of rin = 4 AU and an outer radius rout = 300 AU. Additional details are

given in Schneider et. al. (2003), Astronomical Journal, v. 125, p. 1467. Note that the radius of the

disk’s inner edge is much larger than the stellar radius, which suggests that the disk’s central region

may have been cleared out by one or more planets; this possibility is explored further in Chapter 12.

11.4 a.) Section 10.2.3 shows that the flux density of a fluid’s ith component of linear

momentum is Πi. Consider a fluid whose motions are restricted to the horizontal x̂–ŷ

plane, and show that the fluid’s momentum flux in the radial r̂ direction can be written

Fr = cos2 θΠ11 + sin θ cos θ(Π12 +Π21) + sin2 θΠ22 (11.62)

b.) Keep only the contributions to Eqn. (11.62) that are due to viscosity, and show that

fluid’s viscous momentum flux in the radial direction is

F ν
r = −

(

4

3
η + ζ

)

∂vr
∂r

−
(

ζ − 2

3
η

)(

vr
r

+
1

r

∂vθ
∂θ

)

(11.63)

when written in terms of cylindrical coordinates and velocities. This is the fluid’s two

dimensional viscous momentum flux density, and it has units of momentum per area per

time. To apply this result to a thin fluid layer of surface density σ, integrate vertically

across the fluid layer to obtain

fν
r =

∫

F ν
r dz = −σ

(

4

3
νs + νb

)

∂vr
∂r

− σ

(

νb −
2

3
νs

)(

vr
r

+
1

r

∂vθ
∂θ

)

(11.64)

where νs = η/ρ is the fluid’s kinematic shear viscosity and νb = ζ/ρ is the kinematic bulk

viscosity.

c.) Consider the viscous transfer of radial momentum into as well as out of a small fluid

patch that has area dA = rdθ × dr. Show that this viscous transfer of momentum results

in the radial acceleration

aνr = − 1

σ

∂fν
r

∂r
(11.65)
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being exerted on that patch.

11.5 Show that when the disk of Section 11.2 inviscid, its angular momentum flux due

to advection, Eqn. (11.11), is simply Fz = ℓzv+ p θ̂. Hint: see the results of problem 1.7,

which is conceptually similar.

11.6 Equation (11.34) provides the surface density σ of the viscous disk that is considered

in Section 11.2.3, and that formula is plotted in Fig. 11.1. But that equation can be

problematic early in the disk’s evolution when time τ is small, which makes the argument

of the exponential small while the argument of the Bessel function is large. Equation (11.34)

is then the product of a very small number and a very large number, and evaluating these

on a computer can lead to underflow and overflow errors. To avoid this, use the analysis of

Bessel functions in reference [1] to obtain Eqn. (11.35), which avoids this problem and is

valid when and where τ ≪ 2x.

11.7 Consider the early evolution of an initially narrow ring that is described in Section

11.2.3. Let ∆r be the ring’s efold halfwidth where σ(R + ∆r, t) = e−1σ(R, t). From

this requirement derive Eqn. (11.37), which is the time for a narrow ring to spread a radial

distance ∆r due to its viscosity.

11.8 Insert the viscous ring’s surface density, Eqn. (11.35), into the general expression

for the fluid’s radial velocity, Eqn. (11.21). Evaluate vr at the ring’s edge at r = R±∆r,

and show that it recovers Eqn. (11.38).

11.9 Insert Eqn. (11.34) into Eqn. (11.39) and evaluate the integral to show that the

viscous disk of Section 11.2.3 preserves its total angular momentum over time.

11.10 Show that when a viscous disk is steady, then the tangential acceleration on a fluid

element in the disk is simply

aν =
1

2
Ωvr (11.66)

where vr is the fluid element’s radial velocity.

11.11 Use the vector identities in Appendix A to derive the fluid’s energy flux density

Fe and the dissipation density δ, Eqns. (11.53–11.54), from Eqn. (11.51).

11.12 Insert Eqns. (11.61) into (11.56) to show that the disk’s dissipation rate per area is

d = −νσ(rΩ′)2.
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