
CHAPTER 1

REVIEW OF CLASSICAL MECHANICS

Newton’s laws of motion provide the starting point for all of the physics that is discussed

in this text. This brief review of elementary classical mechanics discusses those laws, and

the useful conservation theorems that follow from them.

1.1 NEWTON’S LAWS OF MOTION

I: A body remains at rest or in uniform motion unless acted upon by a force . In other

words, its velocity is constant when the force on that body is F = 0.

II: A body acted upon by a force moves such that the time rate of change of its momentum

equals that force, namely, ṗ = F, where p = mṙ is the body’s linear momentum ,

m its mass, r its position vector, and its velocity ṙ = dr/dt where the derivative is

with respect to time t. This is the familiar F = mr̈ law.

III: If two bodies exert forces on each other, those forces are equal in magnitude and

opposite in direction. Thus if F12 is the force on particle 1 that is exerted by particle

2, then F21 = −F12.

1.2 REFERENCE FRAMES AND COORDINATE SYSTEMS

A reference frame is the coordinate grid that that is used to measure all particles’ positions

and velocities. Newton’s laws are valid in an inertial reference frame, and law I indicates

that an inertial reference frame is one that is stationary or moving with a constant velocity.
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2 REVIEW OF CLASSICAL MECHANICS

Figure 1.1 Position vector r for a particle at point P. Note that the unit vectors r̂ and θ̂ lie in the

x̂–ŷ plane.

Cartesian and cylindrical coordinate systems will be used in this text. In those coordinate

systems, the position vector for particle at point P is (see Fig. 1.1)

r = xx̂ + yŷ + zẑ in Cartesian coordinates (1.1)

= rr̂ + zẑ in cylindrical coordinates. (1.2)

In this cylindrical coordinate system, the unit vector r̂ is always confined to the x̂–ŷ plane.

Note also the distinction in the lengths r =
√

x2 + y2 and |r| =
√

x2 + y2 + z2. In these

coordinate systems, the particle’s velocity is

ṙ =
dr

dt
= ẋx̂+ ẏŷ + żẑ = ṙr̂+ rθ̇θ̂ + żẑ, (1.3)

and its acceleration is

r̈ =
d2r

dt2
= ẍx̂+ ÿŷ + z̈ẑ = (r̈ − rθ̇2)r̂ +

1

r

d

dt
(r2θ̇)θ̂ + z̈ẑ. (1.4)

1.3 LINEAR AND ANGULAR MOMENTA

Law II indicates that a particle’s linear momentum p = mṙ is conserved (i.e., a constant)

when the total force on it is zero. That particle’s angular momentum is L = r× p =
mr× ṙ, and rate at which L varies is the the torque on that particle, T = dL/dt =
m(ṙ× ṙ + r× r̈) = r× F. When the net torque on that particle is zero, its angular

momentum is conserved.

1.4 WORK AND ENERGY

Suppose force F displaces a particle a small differential distance dr′ during a short time

interval dt; see Fig. 1.2. The small amount of work that that force performs on that particle
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Figure 1.2 A particle is displaced from r0 to r1 by force F along three possible paths. The work

done on the particle is W =
∫

r1

r0

F · dr′, and if W is independent of the choice of path (a, b, or c),

then the force is said to be conservative.

is dW = F · dr′, so the total work done on that particle as that force drives the particle

from position r0 to r1 is the sum of all the contributions dW along that path, which is

W =

∫

r1

r0

F · dr′. (1.5)

Note also that

dW = mr̈ · dr = mr̈·dr
dt

dt = mr̈ · ṙdt = 1

2
m

d

dt
(ṙ · ṙ) = 1

2
m
d(v2)

dt
, (1.6)

where v2 = ṙ · ṙ is the square of the particle’s velocity. The total work that F must do to

drive the particle from r0 → r1 is then

W =
1

2
m

∫

r1

r0

d(v2) =
1

2
m(v21 − v20) = T1 − T0, (1.7)

where Ti =
1

2
mv2i is the particle’s kinetic energy when at position ri. Thus the work done

on the particle is simply its change in kinetic energy. Also note that the rate at which force

F does work on the particle is

P =
dW

dt
= mr̈ · ṙ, (1.8)

which is also known as the power delivered to that particle by force F.

The work done on the particle by forceF is also related to changes in its potential energy

U . This text is largely concerned with conservative forces, and a conservative force is one

where the work W performed on a particle is independent of the particular path that takes
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the particle from r0 to r1 ; see Fig. 1.2 When that is the case, then the vector force F can

always be written as the gradient of a scalar U(r) that is a function of position r only:

F = −∇U, (1.9)

where U is the system’s potential energy. The gradient of U in Cartesian and cylindrical

coordinates is

∇U =
∂U

∂x
x̂+

∂U

∂y
ŷ +

∂U

∂z
ẑ

=
∂U

∂r
r̂+

1

r

∂U

∂θ
θ̂+

∂U

∂z
ẑ

(1.10)

So for example, the component of force along the x̂ axis is Fx = −∂U/∂x, while the

azimuthal force is Fθ = −(∂U/∂θ)/r. Then the work, Eqn. (1.5), becomes

W = −
∫

r1

r0

∇U ·dr, (1.11)

where U(r) is a function of the particle’s trajectory r(t), which is the path traced by the

particle over time. Next, use the chain rule to calculate dU/dt in a Cartesian coordinate

system:

dU

dt
=

∂U

∂x

dx

dt
+

∂U

∂y

dy

dt
+

∂U

∂z

dz

dt
= (∇U)·ṙ. (1.12)

Thus dU = (∇U)·dr is the small change in the particle’s potential energy that occurs as

it advances a small distance dr along its trajectory during the short time interval dt. The

work done on the particle can now be written as

W = −
∫

r1

r0

dU = −(U1 − U0) (1.13)

where Ui = U(ri) is the potential energy of the particle when it is at position ri. Thus

the work done on the particle is also −1 times its change in potential energy. And since

W = T1 − T0 = −(U1 − U0), this means that the particle’s energy at the endpoints of the

trajectory, E1 = T1 + U1 = T0 + U0 = E0, is a constant, which tells us that the particle’s

energy E = T + U is conserved, provided of course that the force acting on the particle

is conservative. Conservative systems are frictionless (i.e.. have no velocity–dependent

forces), and any external forces, if present, do not have any time dependence.

1.4.1 potential energy, and the potential

According to Eqns. (1.5) and (1.13), the system’s potential energy U(r) is −1× the work

done on the particle as it is moved from the reference position r0 to its present position r,

so

U(r) = −W = −
∫

r

r0

F(r′) · dr′, (1.14)

where r′ is a dummy variable that runs along the integration path (see Fig. 1.2). Note also

that the unimportant constant U0 has been dropped from the above, which means that the

system’s energy scale has been calibrated such that U(r0) = 0.
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Figure 1.3 Two gravitating particles, one of mass m at r, and the other of mass M at rM . The

lower figure illustrates how this system’s potential energy U is calculated at particle m is drawn from

the reference site r0 to its final position at r.

EXAMPLE 1.1

To illustrate the calculation of U , consider a simple gravitating two–particle system.

The field particle, which is the particle of interest, has a mass m and a position vector

r, and it is free to move about the system, while the source mass M , which is the

source of the force that disturbs m, remains at a fixed position rM . According to

Newton’s law of gravity, the force on m due to M is

F = −GMm(r− rM )

|r− rM |3 , (1.15)

and this force law is written so that it is evident that force F draws the field mass

m towards the source mass M . Put the origin on M so that rM = 0, and recall

that U is −1× the work done on the particle as M ’s force delivers particle m from

the reference site r0 to its present position r. Thus the force on m when it is at an

intermediate distance r′ = |r− rM | away from M is F = −(GMm/r′2)r̂ where r̂

is the usual unit radial vector; see the lower part of Fig. 1.3. The potential energy of

this two–particle system is then

U(r) = −
∫

r

r0

F(r′) · dr′ =
∫ r

∞

GmM

r′2
dr′ = −GmM

r
, (1.16)

where the arbitrary reference distance r0 has been set to infinity, as is required since

Eqn. (1.14) has set U(r0) = 0 at the reference site.
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Figure 1.4 A Gaussian surface S surrounds a volume that contains mass m. The position vector r

also points to the small area element da = n̂da on surface S.

Another useful quantity is the potential energy per unit mass, Φ(r) = U/m, also known

as the system’s potential. From Eqn. (1.16), the gravitational potential that the target mass

m experiences due to the source mass M is

Φ =
U

m
= −GM

r
. (1.17)

Newton’s 2nd law, which is the principal equation of motion for this text, now becomes

r̈ = −∇Φ. (1.18)

1.4.2 Gauss’ law

Next, derive Gauss’ law, by placing an imaginary Gaussian surface S around a gravitating

point mass m. The gravitational acceleration g at some point on the surface is

g = −∇Φ = −Gm

r2
r̂. (1.19)

Let da = dan̂ represent a small patch on S of area da whose orientation is described

by a unit vector n̂ that is normal to da; see Fig. 1.4. The gravitational flux that passes

through that area is g · da, and in analogy with electrostatics, that flux can be thought of

as a measure of the number of ‘lines of force’ that pass through da. The total gravitational

flux Ψ that passes through surface S is then

Ψ =

∫

S

g · n̂da. (1.20)

Sinceg · n̂ = −Gm cos θ/r2, the total flux through surfaceS is Ψ = −Gm
∫

S
cos θda/r2.

Figure 1.5 shows that cos θda is the projected area of da as seen by an observer sitting on
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Figure 1.5 The area element da subtends a solid angle dΩ = cos θda/r2.

m, so dΩ = cos θda/r2 is the solid angle that da subtends, as seen from mass m. Thus the

flux through S is Ψ = −Gm
∫

S dΩ = −4πGm since
∫

S dΩ = 4π is also the solid angle

of a sphere. And if surface S contains multiple masses mi, then Menc =
∑

mi is the total

mass enclosed by surface S, and the gravitational flux becomes

Ψ =

∫

S

g · n̂da = −4πGMenc. (1.21)

This is the integral form of Gauss’ law, and it is very useful for problems that have a high

degree of symmetry such that the area integral is easily evaluated.

EXAMPLE 1.2

Use Gauss’s law to calculate the gravitational acceleration g(r) inside and outside a

sphere of radius R and a constant density ρ. Then calculate the sphere’s gravitational

potential Φ(r).

The body’s spherical symmetry means that g(r) = g(r)r̂, and that a spherical

Gaussian surface of radius r would be in order; see Fig. 1.6. The normal to surface

S always points radially, so n̂ = r̂ and the gravitational flux through surface S is

Ψ =
∫

S g · r̂da =
∫

S g(r)da = g(r)4πr2 = −4πGMenc where the mass enclosed

by S is

Menc(r) =

{

4π
3
ρr3 r < R

4π
3
ρR3 ≡ M r ≥ R.

(1.22)

The acceleration due to the sphere is then

g(r) = −GMenc(r)

r2
=

{

− 4π
3
Gρr r < R

−GM
r2 r ≥ R.

(1.23)

The sphere’s potential Φ is obtained by using Eqns. (1.14) and (1.17) to calculate

Φ for a particle of mass m, and noting that the force that the sphere exerts on this

particle is F = mg. This then yields

Φ(r) = −
∫

r

r0

g(r′) · dr′, (1.24)
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Figure 1.6 A uniform sphere of radius R and density ρ also contains a spherical Gaussian surface

of radius r. A small area element da on the Gaussian surface having a unit normal n̂ is also indicated.

where r0 is again an arbitrary reference point. Taking r0 to be at infinity, the potential

at any site exterior to the sphere is

Φ(r > R) = −
∫ r

∞
g(r′ > R)dr′ = −GM

r
, (1.25)

which is the potential of a point mass, as expected. The potential inside the sphere is

Φ(r < R) = −
∫ r

∞
g(r′)dr′ = −

∫ R

∞
g(r′ > R)dr′ −

∫ r

R

g(r′ < R)dr′

= −GM

R
+

2π

3
Gρ(r2 −R2) = −2π

3
Gρ(3R2 − r2).

(1.26)

Be sure to use the same reference point r0 when calculating Φ(r) in both the interior

and exterior zones.

1.4.3 Poisson’s equation

A differential form of Gauss’ law is obtained from the definition of the gravitational flux

Ψ =

∫

S

g · n̂da = −4πGMenc = −4πG

∫

V

ρ(r)dV (1.27)

where the enclosed mass is Menc =
∫

V ρ(r)dV where ρ(r) is the density of matter in

volume V that is enclosed by surface S (see Fig. 1.4). Next, invoke the divergence theorem

of vector calculus, Eqn. (A.24a), which allows the surface integral to be recast as a volume

integral,

Ψ =

∫

S

g · n̂da =

∫

V

∇ · gdV, (1.28)



WORK AND ENERGY 9

noting that ∇ · g = −∇2Φ by Eqn. (1.19). Thus Ψ = −
∫

V ∇Φ2dV = −4πG
∫

V ρdV , so

∫

V

(∇2Φ− 4πGρ)dV = 0. (1.29)

This result must hold for any arbitrary volume V , which means that the integrand itself

must be zero, so

∇2Φ = 4πGρ. (1.30)

This is Poisson’s equation, which is the differential form of Gauss’ law, and its relates the

mass distribution ρ(r) to its gravitational potential Φ(r). This equation is of fundamental

importance to hydrodynamic studies of gravitating fluids, and it is used to study the

formation of galaxies and stars. This equation will also be used later in this text to study

gravitational instabilities, and also spiral wave theory.

Lastly, note that free space, where ρ = 0, obeys the Laplace equation,

∇2Φ = 0 (1.31)

1.4.4 the gravitational stress tensor

The density of the gravitational force that is exerted on a distribution of matter is f = ρg
where the gravitational acceleration is g = −∇Φ and the matter density is ρ = ∇2Φ/4πG
from Poisson’s equation (1.30), so the force density can be written f = −g(∇ · g)/4πG.

Also recall that the curl of the gradient of a scalar is zero (e.g. Eqn. A.16), so∇×g = 0. So

one can also write f = −[g(∇·g)−g×(∇×g)]/4πG, butg×(∇×g) = 1

2
∇g2−(g ·∇)g

by Eqn. (A.15) so f = −[(g · ∇)g + g(∇ · g)− 1

2
∇g2]/4πG, noting that the first term is

the convective operator, Eqn. (A.22). Now let x̂i refers to the three cartesian coordinates

x̂, ŷ, or ẑ when i = 1, 2, or 3. Then the ith component of the force density fi is

fi = − 1

4πG





3
∑

j=1

gj
∂gi
∂xj

+

3
∑

j=1

gi
∂gj
∂xj

− 1

2

∂g2

∂xi



 (1.32)

= − 1

4πG

3
∑

j=1

∂

∂xj

(

gigj −
1

2
δijg

2

)

(1.33)

= − 1

4πG

3
∑

j=1

∂σij

∂xj
(1.34)

where the

σij =
1

4πG
(gigj −

1

2
δijg

2) (1.35)

are the elements of a 3× 3 matrix that is called the the gravitational stress tensor. Note that

the stress tensor is symmetric, σij = σji. Now form the vector σi =
∑

j σij x̂j , which

allows one to write fi more compactly as

fi = −∇ · σi. (1.36)
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To demonstrate the meaning of the vector σi, consider some volume V and calculate

the total force on that volume along direction x̂i, which is

Fi =

∫

V

fidV = −
∫

V

∇ · σidV = −
∫

A

σi · da (1.37)

where the right hand side is obtained using the divergence theorem (A.24a), and the A in

the above is the area that bounds volume V . So the volume’s ith momentum component

evolves at the rate dpi/dt = Fi = −
∫

A
σi ·da due to force Fi. Evidently σi is the flux of

the material’s ith component of linear momentum due to gravity. Note that the minus sign

in Eqn. (1.37) accounts for the fact that as momentum flows out of volume V through area

da at the rate σi ·da, volume V reacts as if its momentum is reduced at the rate −σi ·da.

1.4.4.1 gravitational transport of angular momentum The material’s angular

momentum density is ℓ = ρr×ṙ, and that quantity evolves at the rate dℓ/dt = r×d(ρṙ)/dt.
The following is interested in the evolution that is due solely to the system’s gravity, which

is a conservative force, so d(ρṙ)/dt = f and dℓ/dt = r × f as expected. The integrated

torque across some volume V of this material is

T =

∫

V

dℓ

dt
dV =

∫

V

(r× f)dV =

∫

V

[(x3∇ · σ2 − x2∇ · σ3) x̂1

+ (x1∇ · σ3 − x3∇ · σ1) x̂2 +(x2∇ · σ1 − x1∇ · σ2) x̂3]dV

=

∫

V

{[∇ · (x3σ2 − x2σ3)− σ2 · ∇x3 + σ3 · ∇x2] x̂1

+ [∇ · (x1σ3 − x3σ1)− σ3 · ∇x1 + σ1 · ∇x3] x̂2

+ [∇ · (x2σ1 − x1σ2)− σ1 · ∇x2 + σ2 · ∇x1] x̂3}dV.

(1.38)

Now note that −σ2 · ∇x3 + σ3 · ∇x2 = −σ23 + σ32 = 0 since the gravitational stress

tensor is symmetric. The other similar terms in Eqn. (1.38) also sum to zero, so the total

torque on volume V has components Ti = −
∫

V
∇ ·FidV = −

∫

A
Fi ·da where Fi is the

flux of angular momentum about axis x̂i such that

F1 = x2σ3 − x3σ2 (1.39)

F2 = x3σ1 − x1σ3 (1.40)

F3 = x1σ2 − x2σ1. (1.41)

Chapter 12 will use this result to calcuate the rate at which a gravitating disk will transport

angular momentum via density waves. In that system the quantity of interest is the angular

momentum flux about the disk normal x̂3 = ẑ, and the preferred coordinate system

is cyclindrical coordinates. And in problem 1.7 you will show that the disk’s angular

momentum flux is

Fz =
r

4πG

[

grgθ r̂−
1

2
(g2r − g2θ) θ̂

]

(1.42)

in cylindrical coordinates, where gr and gθ are the radial and azimuthal components of the

disk’s gravitational acceleration.

1.5 ROTATING REFERENCE FRAMES

At times it will be convenient to work in a rotating reference frame. Rotations are described

by a vector ω whose magnitude and direction indicate the angular rate rotation about the
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rotation axis. A particle’s velocity in the rotating reference frame, ṙr is related to its

velocity in the stationary frame, ṙs, via

ṙr = ṙs − ω×r, (1.43)

where r is the particle’s position relative to the rotating origin. If the reference frame’s

rotation is steady, ω is a constant, and the particle’s equation of motion becomes

r̈r = −∇Φ− ω × (ω × r)− 2ω × ṙr. (1.44)

The two new terms are of course the centrifugal and Coriolis accelerations, respectively,

that appear when Newton’s second law is adapted for use in a non–inertial reference frame.

1.6 SYSTEMS OF PARTICLES

The following summarizes the conservation theorems that result when Newton’s laws are

applied to a system composed ofN discrete particles. These are offered here without proof,

since their derivations can be found in any text on classical mechanics.

1.6.1 linear momentum

The system is composed of N particles, where mj is the mass of the j th particle that has a

position vector rj . The system’s center of mass is

R =
1

M

N
∑

j=1

mkrj (1.45)

where M =
∑

j mj is the total mass of the system, and its total linear momentum

momentum is P =
∑

j pj where pj = mj ṙj is the momentum of particle j. Note also

that Ṗ = MR̈.

The N particles can be mutually interacting, so the force Fj on any one particle j can

be written

Fj =
∑

k 6=j

fjk + Fe
j = mj r̈j , (1.46)

where fjk is the force on particle j due to body k, and Fe
j represents any additional force on

j that is external to the system. For instance, if the system were a star cluster that inhabits

a galaxy, then fjk would be the force on star j due to star k, while the external force Fe
j

would represent the galactic tide, which is the acceleration that the galaxy exerts on star j
relative to the cluster’s center of mass. The total force on the system is the above summed

over all particles, but the sum of all the internal forces,
∑∑

j 6=k fjk , is zero by Newton’s

3rd law, so the total force on the system is

N
∑

j=1

Fj =

N
∑

j=1

Fe
j = Fe, (1.47)

where Fe is the sum of all the external forces. It then follows that

Ṗ = MR̈ =

N
∑

j=1

mk r̈j =

N
∑

j=1

Fe
j = Fe, (1.48)
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which means that the system’s center of mass evolves as if it were a single particle of mass

M under the influence of the total external force Fe. The system’s total linear momentum

P is also conserved when the total external force is zero.

1.6.2 angular momentum

The system’s total angular momentum about the origin is L =
∑

j Lj , where Lj =
mjrj×ṙj is the angular momentum of particle j about the same origin. Note that the origin

need not coincide with the system’s center of mass, so write a particle’s position vector as

rj = R+ r′j , where r′j is its position relative to the center of mass R. It can then be shown

that the system’s total angular momentum is

L = R×P+

N
∑

j=1

L′
j , (1.49)

where L′
j = mjr

′
j×ṙ′j is the angular momentum of particle j about the center of mass.

Thus the system’s total angular momentum is the sum of two parts: the angular momentum

due to the center of mass’s motion about the origin, R×P, plus the angular momentum

of the system about its center of mass,
∑

j L
′
j .

All of the systems considered in this text obey the strong form of Newton’s 3rd law,

which assumes that the internal force exerted between any two particles, fjk , is directed

along the line joining particles j and k. It can then be shown that the internal forces do not

alter the system’s total angular momentum—only external forces alter L, and at the rate

L̇ =

N
∑

j=1

Te
j = Te (1.50)

where Te
j = rj×Fe

j is the external torque exerted on particle j, and Te is the total external

torque on system. So when the strong form of Newton’s 3rd applies, which is usually the

case, then the system’s total angular momentum is conserved when there are no external

torques.

1.6.3 energy

Arguments similar to that given in Section 1.4 will show that the total energy of a conser

vative system, E = T + U , is conserved. The system’s total kinetic energy is

T =
1

2
MṘ2 +

N
∑

j=1

1

2
mj ṙ

′2
j , (1.51)

which is the kinetic energy due to the motion of the center of mass plus that due to internal

motions about the center of mass. The system’s total potential energy is

U =

N
∑

k=1

N
∑

ℓ=k+1

U i
kℓ +

N
∑

k=1

Ue
k (1.52)

where U i
kℓ is the potential energy associated with the internal force fkℓ exerted between

particles k and ℓ, and Ue
k is the potential energy due to the external force Fe

k on particle
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Figure 1.7 The small volume element dV = dxdydz in Cartesian coordinates and dV = rdrdθdz
in cylindrical coordinates.

k. The double sum in the above is constructed to avoid any overcounting of energies or

forces. The force on any one particle j is then

Fj = −∇jU = −∇j

∑

k 6=j

U i
jk −∇jU

e
j , (1.53)

where ∇jU indicates the gradient of U calculated with respect to particle j’s spatial

coordinates. This of course is identical to Eqn. (1.46), since the internal force on j due to

k is fjk = −∇jU
i
jk, and the external force on j is Fe

j = −∇jU
e
j .

1.6.4 continuous systems

The preceding results obtained above for a system of discrete particles is easily generalized

for a continuous distribution of matter that has a volume density ρ(r). To account for this,

replace the mass mj appearing in any of the above sums with ρ(r)dV , where dV is a small

volume element, and replace the summation symbol with an integral. So for example, the

center of mass for some cloud of matter would be (from Eqn. 1.45)

R =
1

M

∫

V

ρ(r′)r′dV ′, (1.54)

where the integration proceeds over the cloud’s volume V , with M =
∫

V ρ(r′)dV ′ being

the cloud’s total mass. If the integration is performed in a Cartesian coordinate system,

then the differential volume element is dV ′ = dx′dy′dz′. But if cylindrical coordinates are

used, then dV ′ = r′dr′dθ′dz′ (see Fig. 1.7).

But if the matter distribution is two–dimensional, such as plane or a shell, then replace the

small mass element ρ(r)dV with σ(r)dA, where σ(r) is the mass surface density, and dA is

the small area element, and integrate over the body’s entire area A, e.g., M =
∫

A
σ(r′)dA′.

So for example, if the surface is a plane, then dA′ = dx′dy′ or dA′ = r′dr′dθ′ in Cartesian

or polar coordinates.
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Figure 1.8 A disk has radius R and surface density σ, and its gravitational potential Φ is to be

evaluated at the field point P that lies a vertical distance z from the disk’s center. To calculate Φ, treat

the disk as concentric annuli having radii ℓ′, radial width dℓ′, and differential area dA′
= 2πℓ′dℓ′,

and sum the contributions from all annuli.

EXAMPLE 1.3

A thin flat disk has a radius R, a constant surface density σ, and is in keplerian

rotation about its center. The disk’s angular velocity at its outer edge is Ω. Calculate

the disk’s total angular momentum.

As we shall see in Chapter 2, Keplerian rotation means that the disk’s angular

velocity θ̇ varies with radius r in the disk as r−3/2, so θ̇ = Ω(r/R)−3/2, and the

tangential velocity of any disk parcel is ṙ = rθ̇θ̂ (Eqn. 1.3). A small parcel of the disk

will have mass dm = σdA, where dA is the area of that disk element, so its angular

momentum content is dL = dmr× ṙ where r = rr̂ is the position vector of that

area element. The disk’s angular momentum density is thus ℓ = dL/dA = σr2θ̇ẑ,

and the disk’s total angular momentum is L =
∫

A ℓdA where dA = 2πrdr is the

area of an annulus in the disk. The disk’s total angular momentum is then

L =

∫ a

0

σr2Ω
( r

R

)−3/2

ẑ2πrdr = 2πσΩR4ẑ

∫ 1

0

x3/2dx =
4

5
πσΩR4ẑ. (1.55)

EXAMPLE 1.4

A disk has radius R and a constant surface density σ. Calculate the disk’s gravita

tional potential Φ at a perpendicular distance z away from the disk’s center. What is

Φ in the limit that R ≫ |z| (i.e., in the limit that the disk is a sheet having an infinite

extent)? Then place a massless test particle in this system—what is its acceleration
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due to the sheet’s gravity?

The gravitational potential due to a small mass element is dΦ = −Gdm′/r′ (from

Eqn. 1.17), so the total potential is Φ =
∫

A dΦ, where the integration proceeds

across the disk’s area A, and r′ is the distance from the source mass dm′ to the

socalled field point P where Φ will be calculated; see Fig. 1.8. Divide the disk into

concentric annuli of radii ℓ′, radial width dℓ′, and area dA′ = 2πℓ′dℓ′, and note that

all parts of a given annulus are equidistant from the field point, so r′ =
√
ℓ′2 + z2

and dΦ = −2πGσℓ′dℓ′/
√
ℓ′2 + z2 is the potential due to a narrow ring. The disk’s

total potential is then

Φ =

∫

A

dΦ = −2πGσ

∫ R

0

ℓ′dℓ′√
ℓ′2 + z2

= −2πGσ

∫

√
R2+z2

|z|
du (1.56)

upon the substitution u =
√
ℓ′2 + z2, so

Φ(z) = −2πGσ[
√

R2 + z2 − |z|]. (1.57)

To get Φ in the R ≫ |z| limit, it is convenient to rewrite Φ as

Φ = −2πGσR

[

√

1 +
( z

R

)2

− |z|
R

]

(1.58)

so we can invoke the binomial expansion, Eqn. (A.1):

√

1 +
( z

R

)2

≃ 1 +
1

2

( z

R

)2

+O
( z

R

)4

, (1.59)

so the potential of an infinite sheet with |z|/R ≪ 1 is

Φ = 2πGσ|z|, (1.60)

upon dropping the unimportant constant.

To get the acceleration of a test particle, write Φ = sz2πGσz where sz = sgn(z),
so the acceleration is r̈ = −∇Φ = −(∂Φ/∂z)ẑ = −sz2πGσẑ. Note that keeping

proper track of the sign of z in Φ is key to getting the direction of the acceleration r̈

correct, which as we see draws the test particle towards the sheet, as expected.

Problems

1.1 A thin uniform rod has mass M and length L. Show that its gravitational potential

evaluated at the field point r is

Φ(r) = −GM

L
ln

√
1 + α2 − 2α cos θ + α− cos θ√
1 + α2 + 2α cos θ − α− cos θ

(1.61)

where r is the field point’s distance from the rod center, α = L/2r, and θ is the angle

between r and the near part of the rod’s long axis.

1.2 Use Gauss’ law to obtain Eqn. (1.60), which is the gravitational potential of a thin,

infinite sheet that has a constant surface mass density σ.
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1.3 A flat, gaseous slab that has an infinite horizontal extent, a vertical thickness ℓ, and

a constant volume density ρ. Show that the acceleration due to the slab is

g(z) = −4πGρz (1.62)

at sites inside the slab, where z is the vertical distance from the slab’s midplane. Then use

Gauss’ law to calculate g exterior to the slab, and show that your result agrees with Eqn.

(1.60), namely, that g = −∂Φ/∂z.

1.4 A massless testparticle is released from rest at a distance z = 2ℓ from the midplane of

the slab described in Problem 1.3. Describe qualitatively the particle’s subsequent motion.

What is the particle’s velocity when at the slab’s midplane?

1.5 The testparticle from Problem 1.4 is instead released at a height z < ℓ. What is the

frequency of that particle’s oscillations about the slab’s midplane?

1.6 A constant density cylinder has an infinite length and a radius R. Calculate its

gravitational acceleration g and potential Φ, both interior and exterior to the cylinder.

1.7 Show that Eqn. (1.41) can be written

F3 =
1

4πG

[

(x1g2 − x2g1)g +
1

2
(x2 x̂1 −x1 x̂2)g

2

]

=
1

4πG

[

(r× g) · ẑ g +
1

2
(r× ẑ)g2

]

.

(1.63)

Then show that the above leads to Eqn. (1.42).
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