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Perturbed Motion

These lectures will span 4 topics:

1. Gauss’ planetary equations.

These are used to calculate how an orbit evolves over time (ȧ, ė, etc)

due to a perturbing force (like PR drag, aerodynamic drag, etc.).

2. Epicyclic motion in a non–keplerian potential.

These results can be used to describe the motion of a star orbiting in a very

non–keplerian potential well (like a star orbiting a galaxy),

or in a slightly non–keplerian well (like a satellite orbiting an oblate planet).

Orbital precession will be assessed.

3. Resonances.

Lindblad resonances in a galaxy,

and secular & mean–motion resonances in a planetary system.

4. Resonant Trapping.

Use the preceding results to consider what happens when a drag force

delivers particles to a perturber’s resonances, and assess where it does (or

does not) get trapped at resonance.
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Gauss’ Planetary Equations

These eqn’s are very useful for calculating the orbital drifts that a particle

would suffer due to a drag force:

• PR drag on a dust grain

• electromagnetic forces on a charged dust grain

• gravity from an extended object (circumstellar disk, ring, or shell)

Note that Gauss’ eqn’s are not that useful when the disturbing force is the

gravity of another orbiting companion. But we will tackle that problem

later using the methods of point 3 above.

From Section 2.9 of M&D:

Suppose m2 is in an elliptic orbit about the primary m1, and that m2 is also

subject to an additional acceleration

a = arr̂ + aθθ̂ + ann̂ (3.1)

where the ar, aθ components of acceleration in the radial and azimuthal

direction (in m2’s orbit plane), and an is normal to the orbit plane.

This perturbation means that m2’s orbit elements are no longer constant;

rather, they vary at rates ȧ, ė, that we will calculate.
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Calculate ȧ:

The total specific work done by a on m2 as it travels from r1 → r2 is

W =

∫ r2

r1

a·dr (3.2)

So ∆W = a · ∆r = the small differential work/mass that a does on m2 as it

is displaced the small distance ∆r. This work changes m2’s specific energy

E by amount ∆E in time interval ∆t, so

∆E

∆t
= a·∆r

∆t
(3.3)

or Ė = a · ṙ (3.4)

where ṙ = ṙr̂ + rθθ̂ (3.5)

so Ė = arṙ + aθrθ̇. (3.6)

Since E = − µ

2a
and h = r2θ̇, (3.7)

Ė =
µ

2a2
ȧ (3.8)

Write the radial and tangential velocities ṙ & rθ̇

in terms of osculating orbit elements:

Recall that these orbit elements are defined by assuming that m2’s mo-

tion is pure unperturbed 2–body motion. The velocities in turn can be

obtained from osculating orbit elements that are presumed constant at time t.
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To get radial velocity ṙ, start with the ellipse equation:

r(t) =
p

1 + e cos f
, where (3.9)

semilatus rectum p = a(1 − e2) = h2/µ, (3.10)

true anomaly f(t) = θ − ω̃ (3.11)

thus ṙ =
pe sin f ḟ

(1 + e cos f)2
=
r2

p

h

r2
e sin f (3.12)

since ḟ = θ̇ = h/r2 (3.13)

so ṙ =
eh

p
sin f =

e sin f√
1 − e2

an = m2’s radial vel’ (3.14)

where mean motion n =

√

µ

a3/2
, and µ = n2a3 (3.15)

The tangential velocity rθ̇ is obtained from

rθ̇ =
h

r
=
h

p
(1 + e cos f) =

1 + e cos f√
1 − e2

an (3.16)

Plug these results into Ė:

Ė =
1

2
n2aȧ =

an√
1 − e2

[are sin f + aθ(1 + e cos f)] (3.17)

so ȧ =
2

n
√

1 − e2
[are sin f + aθ(1 + e cos f)] (3.18)

Recall that the torque on m2 is due to a is |T?| = m2|r× a| ' m2aaθ when

the orbit is nearly circular, ie e� 1. In this case, ȧ ' 2aθ/n = 2T ?/m2an,

which recovers your earlier result, Eqn. (2.138).

⇒the tangential acceleration aθ determines m2’s radial drift;

this is sometimes called the ‘along–track acceleration’.
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Calculate ė and di/dt by considering m2’s specific angular momentum

h = hn̂, where n̂ = ẑ is normal to the orbit plane:

The specific torque on m2 due to acceleration a is

T =
dh

dt
= r × a = rr̂×(arr̂ + aθθ̂ + ann̂) = raθn̂− ranθ̂ (3.19)

= ḣn̂ + h
dn̂

dt
(3.20)

Thus ḣ = raθ and
dn̂

dt
= −ran

h
θ̂ =

ran
h

r̂ × n̂ (3.21)

The left eqn’ tells us that only the magnitude of h is altered by aθ,

and the right eqn’ says that its direction is only altered by an.

Since h =
√

µa(1 − e2),

dh

dt
=

1

2

√

µ(1 − e2)

a
ȧ−

√

µa

1 − e2
eė = raθ (3.22)

so eė =
(1 − e2)

2a
ȧ−

√

1 − e2

µa
raθ (3.23)

=

√
1 − e2

na
[are sin f + aθ(1 + e cos f)] −

√
1 − e2

na

r

a
aθ (3.24)

=

√
1 − e2

na

[

are sin f + aθ

(

1 + e cos f − r

a

)]

(3.25)

Recall r = a(1 − e cosE) E = eccentric anomaly, Eqn. (1.67) (3.26)

Thus ė =

√
1 − e2

na
[ar sin f + aθ (cos f + cosE)] (3.27)
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For a body in a nearly circular orbit,

e� 1, cosE ' cos f (see Eqns 1.90–1.91), so

ė ' ar sin f + 2aθ cos f

an
(3.28)

Now calculate di/dt from

dn̂

dt
=

ran
h

r̂ × n̂ (3.29)

Note that i is the tilt of the orbital plane wrt the x̂ref–ŷref reference plane,

which is fixed in space:

and note that ẑref ·n̂ = cos i.

The unit vector Ω̂ points from m1 towards the ascending node.
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so
d

dt
(ẑref ·n̂) = − sin i

di

dt
=
ran
h

ẑref ·(r̂× n̂) (3.30)

and use the vector identity

a · (b × c) = b · (c × a) = c · (a × b) (3.31)

so
di

dt
= = − ran

h sin i
r̂·(n̂× ẑ)ref (3.32)

(3.33)

The sketch shows that n̂× ẑref = − sin iΩ̂,

and that r̂ · Ω̂ = cos(ω + f), so

di

dt
=

ran
h

cos(ω + f) (3.34)

For nearly circular orbits, h = r2θ̇ ' a2n and

di

dt
' an

an
cos θ (3.35)

where angle θ is measured from the ascending node.

Now calculate Ω̇.

Let ∆n = the change in the orbit normal n̂ after small time interval ∆t.

We are interested in ∆nΩ ≡ Ω̂ · ∆n, which is the component of ∆n that is

parallel to Ω̂ that causes the node to rotate.

Thus ∆nΩ = Ω̂ · ∆n is n̂’s change in the x̂ref–ŷref plane, and

∆Ω =
∆nΩ

sin i
(see figure) (3.36)

is the total change in m2’s node after time ∆t. Thus
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Ω̇ =
∆Ω

∆t
=

Ω̂ ·∆n

sin i∆t
=

1

sin i
Ω̂·dn̂

dt
= − ran

h sin i
Ω̂ · θ̂ (3.37)

= −ran cos(θ + π/2)

h sin i
(3.38)

=
ran
h sin i

sin θ (3.39)

Assignment #4

due Tuesday February 28

at the start of class

1. a.) A particle in a low–e orbit is perturbed by acceleration a, Eqn. (3.1).

Show that its longitude of perihelion ω̃ varies as

˙̃ω ' 2aθ sin f − ar cos f

ean
+ O(e0). (3.40)

An easy way to obtain ˙̃ω is calculate the time derivative of r(t) in the

epicyclic approximation, r ' a− ae cos(θ − ω̃) (see Eqn’s 1.36, 1.37, 1.98).

DO NOT quote M&D’s exact (and more laborious) solution back at me...

b.) Show that Eqn’ (3.40) agrees with M&D’s exact calculation of ω̇ in the

limit that e� 1.

2. a.) A particle orbit’s is completely embedded within a circumstellar gas

disk, with both orbiting a central star. The particle’s orbit is inclined slightly

relative to the disk’s midplane, ie, sin i� 1. Show that the particle’s height

z above/below the disk midplane is

z(θ) ' a sin i sin θ (3.41)

where θ is the particle’s longitude measure wrt its ascending node.
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b.) The disk has a constant gas density ρ. Use Gauss’ law to show that the

vertical component of the disk’s gravity is an = −4πGρz.

c.) Show that the disk’s gravity causes the particle’s node to precess at the

time–averaged rate of

< Ω̇ > ' −2πGρ/n (3.42)

where n is its mean–motion, and <> indicates time–averaging over an orbit.

3. a.) Use Eqn’s (1.5) and (1.9) to show that the Laplace–Runge–Lenz vector,

A = ṙ × h − µr̂, (3.43)

is conserved (ie, dA/dt = 0) for the two–body problem.

b.) Show that A points from m1 towards m2’s periapse,

and that its magnitude is A = µe.
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Gauss Law & Poisson’s Eqn’

Now derive Gauss’ Law:

Begin by placing an imaginary ‘Gaussian surface’ S around point mass m:

The gravitational acceleration as some point on the surface is

g = −Gm
r2

r̂ (3.44)

Let da = dan̂ represent a small patch on S of area da whose orientation is

described by a unit vector n̂ that is normal to da.

Then g·da is the ‘gravitational flux’ passing through area da.

Think of this as a measure of the number of ‘lines of force’ passing thru da;

the larger m is, the larger the grav’ flux.

The total gravitational flux Ψ that passes through surface S is then

Ψ =

∫

S

g · n̂da (3.45)

and since g · n̂ = −Gm cos θ

r2
, (3.46)

Ψ = −Gm
∫

S

cos θda

r2
(3.47)
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Now note that cos θda is the projected area of da as seen by an observer

sitting on m, so dΩ = cos θda/r2 is the solid angle that da subtends,

as seen by someone at m. Then

Ψ = −Gm
∫

S

dΩ (3.48)

What is
∫

S dΩ ?

Thus Ψ = −4πGm.

Obviously, if surface S contains several masses mi then

Ψ =

∫

S

g · n̂da = −4πG
∑

mi = −4πGMenc (3.49)

where Menc = total mass enclosed by surface S.

This is sometimes known as the integral form of Gauss’ Law.

It is only useful for problems having a high degree of symmetry,

such that the area integral is easily evaluated.
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Trivial example: use Gauss’s law to calculate the grav’ acceleration g(r)

inside & outside a sphere of radius R and constant density ρ.

Note that the body has spherical symmetry, so g(r) = g(r)r̂.

What kind of Gaussian surface should I use?

Use one that takes advantage of the problem’s symmetry,

and makes the area integral easy.

Note that the normal to surface S is n̂ = r̂. Then the flux Ψ is

Ψ =

∫

S

g · r̂da =

∫

S

g(r)da =? (3.50)

= −4πGMenc (3.51)

What is Menc ?

Menc(r) =

{

4π
3 ρr

3 r < R
4π
3
ρR3 = Mtotal r ≥ R

(3.52)

So

so g(r) = −GMenc(r)

r2
=

{

−4π
3 Gρr r < R

−GMtotal/r
2 r ≥ R,

(3.53)

as expected.

You will do something similar to solve problem 2b.) of Assignment #4.

12



Poisson & Laplace Eqns.

Now derive Poisson’s eqn. from Ψ:

flux Ψ =

∫

S

g · n̂da = −4πGMenc = −4πG

∫

V

ρdV (3.54)

where ρ(r) is the matter density enclosed by volume V and surface S.

Next use the divergence theorem for the generic vector field A(r)

that you derived in your vector calculus class:

divergence theorem

∫

S

A · n̂da =

∫

V

∇ · AdV (3.55)

so Ψ =

∫

S

g · n̂da =

∫

V

∇ · gdV (3.56)

Now recall the EOM for a particle that might be roaming about this system:

r̈ = −∇Φ = g (3.57)

where Φ(r) is the system’s gravitational potential, so

Ψ = −
∫

V

∇Φ2dV = −4πG

∫

V

ρdV, (3.58)

or

∫

V

(−∇2Φ + 4πGρ)dV = 0 (3.59)

13



This result holds for any arbitrary volume V .

What does this tell us about the integrand?

∇2Φ = 4πGρ (3.60)

This is Poisson’s eqn’, which is the differential form of Gauss’ Law.

This eqn’ relates the mass density ρ(r) to its gravitational potential Φ(r).

It is of fundamental importance to hydrodynamic studies of gravitating

systems: galaxy formation, star formation, etc.

We use this equation later when we study gravitational instabilities,

and spiral wave theory.

In free space where ρ = 0, you have Laplace’s eqn.:

∇2Φ = 0 (3.61)

Assignment #4

due Tuesday February 28

at the start of class

4. a.) Use Gauss’ planetary equations to show that Poynting–Robertson

(PR) drag causes an orbiting dust grain’s semimajor axis a to shrink at the

time–averaged rate

< ȧ > ' −2β
(an

c

)

(1 + 3e2)an + O(e3) (3.62)

and that PR drag damps its eccentricity at the time–averaged rate

< ė > ' −5

2
β
(an

c

)

en + O(e3) (3.63)

What is di/dt?
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b.) A pair of Kuiper Belt Objects (KBOs) collide, generating a cloud of icy

grains having radii R = 10µm a distance r = 40 AU away from the Sun.

The parent KBOs had eccentricities of e ∼ 0.2. What is the timescale for

the grain’s orbital evolution due to PR drag, τa ≡ |a/ȧ|, in years? What is

the timescale τe ≡ |e/ė| for e–damping due to PR drag?

5.) Solve Eqn. (3.62) for a grain’s semimajor axis a(t), assuming an initially

circular orbit. Suppose an R = 10µm ice–grain were orbiting the star β

Pictoris (which has an extensive dust–disk extending out to r ∼ 103 AU) at

r = 100 AU. How long until that grain spirals into β Pic?

Radiation Forces

Radiation forces are often the dominant perturbing force affecting small

grains (ie, dust).

Radiation pressure from luminous objects (evolved stars, accretion disks

around stars/black holes/galactic nuclei, etc) can be sufficient to drive out

any dust in the vicinity.

Radiation forces are relevant to star formation. Observations of recently–

formed O and B stars show these bright stars can blow away the residual

gas & dust, due to radiation pressure & stellar winds. The formation of O &

B stars in a star–forming region can in fact terminate subsequent formation.

These forces also are important to planetary dynamics. Comets & asteroids

continually generate dust, due to sublimation and/or collisions, and solar

radiation pressure will drive dust smaller than R . 1µm out of the So-

lar System; these are the so–called β meteoroids that spacecraft sometimes

detect streaming away from the Sun.
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The shape of a comet’s dust tail (straight & narrow versus a broad fan) is

entirely controlled by solar radiation pressure.

Interplanetary dust larger than R & 1µm also suffer PR drag, which results

in slow orbital decay (see problems 4–5, above), which tends to deplete

planetary systems of their dust.

Circumstellar dust disks are routinely observed orbiting other stars. Since

PR drag destroys such disks, their existence is usually interpreted as evidence

for replenishment via colliding asteroids or comets.

PR drag can deliver dust to resonances with planets and cause dust to

accumulate there. Dust trapped at a resonance can result in a clumpy dust

ring (e.g., ε Eridani).

PR drag coupled with satellite resonances control the dust rings of Jupiter.

The Yarkovsky effect (YE) is a more subtle radiation force; it is a conse-

quence of a body’s anisotropic thermal emission that occurs when its surface

temperature is uneven. The YE is believed to play a role in the delivery of

R ∼ 10cm meteorites to Earth.

The YE also plays a role in the delivery of R . 1 km Near–Earth Objects

(NEOs), and thus is a factor when considering the impact hazard of NEOs.

Over billions of years, the YE can alter the spins of asteroids and the orbits

of asteroid satellites.

We will assess radiation pressure (which can alter the shape of an orbit) and

PR drag (which causes orbits to slowly drift over time).
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Radiation pressure and PR drag

Lets consider a small dust grain that is orbiting a star.

The geometry in the star’s rest frame is

Now consider this system in dust rest frame;

in this frame, the star orbits about the dust.

this is obtained via the Galilean transformation

r → r − rd and ṙ → ṙ − ṙd.

(Technically, we should be doing a Lorentz transformation,

but that is Galilean when |ṙ| � c.)
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Figure 3.1: Orion nebula imaged by HST
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Figure 3.2: Comet Hale Bopp, imaged by Dave Schleicher.
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Figure 3.3: AU Microscopi, imaged by HST
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Figure 3.4: ε Eridani at submillimeter wavelengths.
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Figure 3.5: Jupiter’s dust rings, imaged by Galileo spacecraft

Figure 3.6: Zodiacal light.
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The star is in the −r̂ direction.

Since the speed of light c = constant, the sketch shows that a moving grain

is bombarded by stellar photons that were emitted from a star that appears

to be displaced slightly in the +θ̂ direction by angle φ = |ṙ|/c.

Since these photons have some momentum in the +θ̂ direction,

they act like a drag force—PR drag—when the grain intercepts the photons.

This drag goes away when the grain is motionless.

This effect is analogous to driving in the rain on a windless day—

driving faster makes the raindrops trajectories more slanted.

This effect is also related to stellar aberration, which is the apparent

displacement of a star (up to 20”) due to the Earth’s orbital motion.

Quantify this:

F = L?/4πr
2 = energy flux incident upon a stationary grain;

L? = star’s luminosity (units=energy/time),

so flux has units energy/area/time.

If the grain is moving with radial velocity ṙ, it will intercept photons

Doppler–shifted to shorter/longer wavelength’s & higher/lower energies, so

Fds = F (1 − ṙ/c) = Doppler–shifted flux.
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Then Ė = FdsA = rate energy is delivered to grain of cross–section A.

Recall a photon carries energy E = pc where p = photon momentum, so

ṗ =
Ė

c
=
FA

c

(

1 − ṙ

c

)

≡ ṗinc (3.64)

is the rate at which stellar photons deliver momentum to the grain;

this is the incident momentum transfer rate, ṗinc.

Keep in mind that momentum is a vector:

ṗinc = ṗincp̂ where direction p̂ = cosφr̂ − sinφθ̂ ' r̂− ṙ/c

to first order in |ṙ/c| � 1 (see figure).

The dust grain can do several things with an incident photon:

• it can absorb it (warming the grain)

• it can scatter it (ie, deflect it)

• and it can emit another thermal photon (cooling the grain)

If we average all possibilities over all photons, and invoke Newton’s 2nd law,

then the force on a grain of mass m is

mr̈ = ṗinc + ṗscat + ṗtherm (3.65)

where the terms are understood as averages over many photons, and thus

represent the net effects due to the absorption of some incident photons, the

scattering of others, and thermal emission.

Small dust grains are certain to have a uniform surface temperature, so

ṗtherm = 0 on average. Why?

For simplicity, we will assume that dust grains are isotropic light scatters,

so ṗscat = 0 on average. Why?
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Actually, observations of the zodiacal light (sunlight scattered by interplan-

etary dust) shows that these dust are not isotropic light–scatterers.

However our faulty assumption merely introduces some uncertainty that is

probably no more than a factor of 2. Why? To verify this, consider two

extreme cases: a grain that is a perfect forward–scatterer, and then a perfect

back–scatterer.

To account for this uncertainty, introduce a fudge–factor

Qpr = radiation pressure efficiency factor, so mr̈ = Qprṗinc.

Lastly, I note that if the “grain’s” surface temperature is not uniform, then

ṗtherm 6= 0, and the body suffers a thermal force known as the Yarkovsky

effect (YE), which afflicts bodies having sizes 10cm. R . 1km.

Why the upper & lower limits on the YE?

Thus our dust grain experiences an acceleration that is,

to first order in |ṙ/c| � 1:

r̈ ' FAQpr

mc

(

1 − ṙ

c

)(

r̂ − ṙ

c

)

(3.66)

' FAQpr

mc

[

(

1 − 2ṙ

c

)

r̂ − rθ̇

c
θ̂

]

(3.67)

≡ arad + aPR (3.68)

where the velocity independent acceleration arad called radiation pressure,

and the velocity–dependent acceleration aRP is called PR drag:

arad ≡ aradr̂ where arad =
FAQpr

mc
, (3.69)

and aPR ≡ −arad
(

2ṙ

c
r̂ +

rθ̇

c
θ̂

)

(3.70)

Use this result to solve problems 4 & 5 of Assignment #4.
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radiation pressure

Note that radiation pressure is an arad ∝ r−2 acceleration, outwards:

arad =
L?Qpr

4πr2mc
=

3L?Qpr

16πρr2Rc
(3.71)

for spherical grains of radius R, density ρ.

Thus radiation pressure merely opposes the star’s gravity g(r) = −GM?/r
2

by the fractional amount

β =
arad
|g| =

3L?Qpr

16πGM?ρRc
(3.72)

so the EOM is r̈ = −GM?

r2
(1 − β)r̂ (3.73)

so a dust grain behaves as if orbiting a star of mass smaller by factor 1− β.

For a ρ ∼ 3 gm/cm3 grain orbiting the Sun, β ∼ 0.2(R/1µm)−1,

assuming Qpr ∼ 1.

Radiation pressure is most relevant to studies of cometary dust tails, since

radiation pressure + centrifugal force (aka, keplerian sheer) determine the

tail curvature.

Technically, our results are valid in the geometric optics limit, which occurs

for grains larger than the typical wavelength of starlight

(ie, R � 1µm for dust orbiting the Sun).

Assessing radiation forces for smaller grains requires a theory for how E&M

waves interact small bodies having R . λ, such as Mie theory.

What happens to small grains having β > 1? (β meteoroids).
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Epicyclic motion in a non–keplerian potential

’Til now we have been studying the motion of a secondary orbiting a point–

mass whose gravity g & potential Φ(r) are keplerian, which has the form

g(r) = −∇Φ = − µ

r2
r̂ where Φ = −µ

r
. (3.74)

The solution for m2’s motion are elliptical or hyperbolic orbits,

and low e & i orbits are epicyclic.

Now lets solve a slightly more general problem: for the motion of a body

orbiting in a potential well that is non–keplerian, where Φ is not ∝ r−1.

We will assume that the system’s vertical gravity is antisymmetric about

the z = 0 plane, ie, g(r, θ,−z) = −g(r, θ, z).

A flattened system, like a disk galaxy or an oblate planet, has this property

Initially, assume that the potential is independent of θ

(ie, azimuthally symmetric): Φ = Φ(r, z).

Examples:

• star orbiting a featureless disk galaxy (a very non–keplerian system)

• a satellite orbiting an oblate gas giant planet (slightly non–keplerian)

We will find that nearly circular orbits in this system are also epicyclic.

Once we have mastered this problem, we will then introduce a weak pertur-

bation that breaks the problem’s azimuthal symmetry. Examples include:

• a rotating bar in the center of a disk galaxy

• another satellite

These perturbations are periodic, and resonances can result.
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Resonances in a galaxy they are called Lindblad resonances,

in planetary environments they are called mean motion & secular resonances.

The EOM

The EOM for particle P orbiting in this potential is r̈ = −∇Φ, where

r = rr̂ + zẑ (3.75)

ṙ = ṙr̂ + rθ̇θ̂ + żẑ (3.76)

r̈ = (r̈ − rθ̇2)r̂ +
1

r

d

dt
(r2θ̇)θ̂ + z̈ẑ (3.77)

in cylindrical coordinates.

Keep in mind that r is P’s in–plane distance from the origin;

P’s total distance is |r| =
√
r2 + z2.

The EOM has components

r̂ : r̈ − rθ̇2 = −∂Φ

∂r
(3.78)

θ̂ :
1

r

d

dt
(r2θ̇) = −1

r

∂Φ

∂θ
= 0 (3.79)

ẑ : z̈ = −∂Φ

∂z
(3.80)

thus the z–component of angular momentum, hz = r2θ̇, is conserved.
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The zeroth order solution: circular, coplanar orbits

First consider the simplest orbit—a circular orbit in the system’s midplane:

r(t) = r0 (3.81)

θ(t) = θ0 + θ′(t) (3.82)

z(t) = 0 (3.83)

The r̂ eqn tells us that

θ̇′2 =
1

r0

∂Φ

∂r

∣

∣

∣

∣

r0

≡ Ω2
0(r0) = constant (3.84)

where the |r0 is a reminder to evaluate quantities at r = r0 and z = 0.

Thus P orbits with a constant angular velocity: θ(t) = θ0 + Ω0t,

and its position vector is r0 = (r0, θ0 + Ω0t, 0).

Note that when the potential is keplerian, Φ = −µ/r
and we recover Ω2

0 = µ/r3
0 = n2, the mean motion2.

First order solution: nearly circular, almost coplanar orbits

Now assume P’s orbit deviates only slightly

from a circular orbit in the midplane:

r(t) = r0 + r1(t) (3.85)

θ(t) = θ0 + Ω0t + θ1(t) (3.86)

z(t) = z1(t) (3.87)

where the deviations are small: |r1| � r0, |θ1| � 1, and |z1| � r0.

The EOM are

r̈1 − (r0 + r1)(Ω0 + θ̇1)
2 = −∂Φ

∂r
(3.88)

hz = (r0 + r1)
2(Ω0 + θ̇1) = integration constant (3.89)

z̈1 = −∂Φ

∂z
(3.90)
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Next, linearize the EOM.

This means to Taylor expand about P’s unperturbed orbit r = r0

to first–order in the small quantities:

∂Φ

∂r
' ∂Φ

∂r

∣

∣

∣

∣

r0

+ r1
∂2Φ

∂r2

∣

∣

∣

∣

r0

= r0Ω
2
0 +

∂2Φ

∂r2

∣

∣

∣

∣

r0

r1 (3.91)

∂Φ

∂z
' ∂Φ

∂z

∣

∣

∣

∣

r0

+ z1
∂2Φ

∂z2

∣

∣

∣

∣

r0

(3.92)

what is ∂Φ/∂z|r0?

thus
∂Φ

∂z
' ν2

0z1 (3.93)

where ν2
0 ≡ ∂2Φ

∂z2

∣

∣

∣

∣

r0

= constant (3.94)

We linearize the EOM by dropping second–order small terms (r2
1, r1θ̇1, etc):

r̈1 − 2r0Ω0θ̇1 −
(

Ω2
0 −

∂2Φ

∂r2

∣

∣

∣

∣

r0

)

r1 ' 0 (3.95)

Ω0 + θ̇1 =
hz
r2
0

(1 + r1/r0)
−2 ' hz

r2
0

− 2hz
r3
0

r1 (3.96)

so θ̇1 =
hz
r2
0

− Ω0 −
2hz
r3
0

r1 (3.97)

and z̈1 + ν2
0z1 ' 0 (3.98)
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We still have some freedom in choosing the meaning of the constant hz.

To simplify things, set hz = r2
0Ω0,

which is equivalent to setting the the radius of the star’s guiding center r0

such that that orbit has specific angular momentum hz. Then

θ̇1 = −2hz
r3
0

r1 = −2Ω0
r1
r0

(3.99)

so r̈1 +

(

3Ω2
0 +

∂2Φ

∂r2

∣

∣

∣

∣

r0

)

r1 ' 0 (3.100)

If we set the constant

κ2
0 ≡ 3Ω2

0 +
∂2Φ

∂r2

∣

∣

∣

∣

r0

= 4Ω2
0 + r0

∂Ω2

∂r

∣

∣

∣

∣

r0

(3.101)

the EOM are simply

r̈1 + κ2
0r1 ' 0 (3.102)

θ̇1 ' −2Ω0
r1
r0

(3.103)

z̈1 + ν2
0z1 ' 0 (3.104)

What is the solution to these EOM?

Evidently, P behaves as if it were a coupled 3D oscillator:

r1(t) = −R cosκ0t (3.105)

θ̇1(t) =
2R

r0
Ω0 cosκ0t (3.106)

so θ1(t) =
2R

r0

Ω0

κ0
sinκ0t (3.107)

z1(t) = Z sin(ν0t + φ0) (3.108)

Where constants R and Z are the epicyclic amplitudes.

Note that time t = 0 corresponds to periapse passage.
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If we identify the star’s epicyclic amplitudes R = er0 and Z = r0 sin i with

the star’s orbital eccentricity e, inclination i, and semimajor axis a = r0,

mean motion n = Ω0, and θ = f + ω̃ where f = true anomaly, ω̃ = θ0 =

longitude of periapse, φ0 = −Ω = then we recover the epicyclic motion of

the 2–body problem (see eqns 1.98, 1.99, & 3.41):

r(t) = r0 − er0 cosκ0t

θ(t) = θ0 + Ω0t + 2e
Ω0

κ0
sinκ0t

z(t) = r0 sin i sin(ν0t + φ0)

(3.109)

This described the epicyclic motion of a particle that is orbiting in a

non–keplerian potential Φ(r, z).

The frequency κ0 is known as the epicyclic frequency, which is the frequency

of P’s radial & transverse oscillations about a guiding center of radius r0,

while ν is P’s vertical oscillation frequency.

Assignment #4

due Tuesday February 28

at the start of class

6. a.) If particle P were orbiting in a keplerian potential, Φ = −µ/r, then

Eqn’s (3.109) should be equivalent to Eqn’s (1.98, 1.99, & 3.41), which in

turn requires κ0 = ν0 = Ω0 = n =
√

µ/r3
0. Show that this is indeed the case.

b.) Show that the angle φ0 in Eqn (3.109) can also be identified with P’s

argument of perihelion, ω.

Additional problems pending...
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orbital precession in a non–keplerian potential

The fact that Ω0 = κ0 = ν0 for the kepler problem means that orbits are

closed, ie, the P’s motion repeats after each orbital period Torb = 2π/Ω0.

However the typical galactic potential is not keplerian;

our Galaxy has ν0 > κ0 > Ω0,

which also implies that stellar orbits are not closed, ie, they precess:

The figure shows the longitude of periapse ω̃ advances ∆ω̃ = 2πΩ0/κ0 − 2π

after time ∆t = 2π/κ0 = time between periapse passage,

so the periapse longitude precesses at the rate

˙̃ω =
∆ω̃

∆t
= Ω0 − κ0. (3.110)

Consideration of P’s vertical motions will show that its longitude of ascending

node, Ωnode, also precesses at the rate

Ω̇node = Ω0 − ν0 (3.111)

Note that in most planetary environments, ν0 > Ω0 > κ0,

so the longitude of periapse typically advances ˙̃ω > 0,

while the longitude of ascending node Ω̇node < 0 usually regresses.

33



Assignment #4

due Tuesday February 28

at the start of class

7.) a.) The centrifugal force on a rotating star or planet tends to coun-

terbalances gravity slightly, making the body oblate, or slightly fatter at its

equator. The gravitational potential of an oblate primary of mass Mp and

mean radius Rp can be written as a sum over Legendre polynomials Pi:

Φ(r) =
−GMp

r

[

1 −
∞
∑

n=2

(

Rp

r

)n

Pn(sinα)

]

(3.112)

where r is the distance of particle P from the primary, α is P’s angular

distance above/below the primary’s equatorial z = 0 plane, and the constant

coefficients Ji are the primary’s zonal harmonics. See page 138 of M&D for

a table of the Pi. For a distant particle orbiting at r � Rp, we usually

need only terms up to the n = 2 harmonic in the above potential. Use this

approximation to calculate the frequencies κ0 and ν0, and then show that

P’s orbit precesses at the rates

˙̃ω ' 3

2
J2

(

Rp

r0

)2

Ω0 (3.113)

Ω̇node ' −3

2
J2

(

Rp

r0

)2

Ω0 (3.114)

b.) Use Gauss’ eqn’ (3.39) to confirm Eqn’ (3.114).

c.) Punch some numbers. Saturn is the most oblate planet in the Solar Sys-

tem, having J2 = 0.0163. What is the orbital period for a particle orbiting

in the middle of the A ring? What is its precession period, Pω̃ = 2π/ ˜̇ω in

units of orbit periods?
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The Epicyclic frequency κ, the Oort Constants A & B,

and the Galactic Potential

Recall the epicyclic frequency κ for a star orbiting in the Galaxy is

κ2 ≡ 4Ω2 + r
∂Ω2

∂r
= 4Ω2 + 2rΩ

∂Ω

∂r
(3.115)

Knowledge of κ is useful in Galactic studies, since it is sensitive to the

gradients in the Galactic potential, and thus a Galaxy’s mass distribution

and its rotation curve vc = rΩ, which is the speed of a star in a circular orbit.

You can glean this information by measuring the so–called Oort constants

A(r) & B(r) (which are actually functions of Galactic radius r):

Chapter 22 of the text by Carroll & Ostlie (C&O) shows that the A & B

‘constants’ are related to a star’s radial and transverse velocities as measured

by an observer at the Sun:

vr = dA sin(2`) (3.116)

vt = d[A cos(2`) +B]. (3.117)

If you know the star’s distance d and its longitude ` from the Galactic

Center, then you can infer local values of A(r) & B(r) from observations of

many nearby stars.

35



C&O derive the relation between A & B and

a star’s circular velocity vc = rΩ about the Galactic center:

A(r) =
1

2

(

vc
r
− dvc
dr

)

= −r
2

dΩ

dr
(3.118)

and B(r) = A− Ω (3.119)

Since

dΩ

dr
= −2A

r
, (3.120)

κ2 = −4BΩ0 (3.121)

Thus a determination of the Oort constant for nearby stars provides the

Sun’s orbital angular velocity Ω and epicyclic frequency κ.

Table 1–2 in Binney & Tremaine (B&T) quotes

A ' 15 km/sec/kpc and B ' −12 km/sec/kpc

for stars in the solar neighborhood, so the Sun’s angular velocity about the

Galaxy is Ω = A−B = 27 km/sec/kpc ' 3 × 10−8 radians/year,

so the Sun’s orbital period is Torb = 2π/Ω ' 2 × 108 years.

The Sun’s epicyclic frequency is κ =
√
−4BΩ = 36 km/sec/kpc,

so its precession rate is ˙̃ω = Ω − κ = −9 km/sec/kpc = −1
3
Ω,

so the Sun’s precession period is Tω̃ = 2π/| ˙̃ω| = 3Torb.

This illustrates on of the main differences between orbits in a planetary

system versus a galactic system—orbital precession in a galaxy occurs on

a timescale comparable to the orbit period, while precession in planetary

system occurs on much longer timescales.

Due to this rapid precession, the star trajectory eventually fills a torus about

the Galactic center—see figures in Section 3.3 of B&T.
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Perturbed epicyclic motion, and resonances

(From Section 3.3 of B&T.) Consider particle P in a nearly circular orbit in

an axially symmetric potential Φ = Φ0(r, z) that in general in non–keplerian.

If P is unperturbed, its motion is epicyclic, ala Eqn’s (3.105).

Now add an additional disturbance to this system: Φ → Φ0 + Φ1

where Φ0(r, z) = axially symmetric potential, as before

and Φ1(r, θ, z, t) = time–dependent, non–axially symm’ perturbing poten-

tial.

Our results will be quite general, since particle P could be

• an asteroid that is perturbed by a planet having a potential Φ1,

• a star orbiting in a galaxy that also has a rotating central bar.

• Φ1 could also represent the disturbance due to a spiral wave that is

propagating in a galaxy, a circumstellar gas disk, or a planetary ring.

These results have many applications in the dynamics of planetary systems

& galaxies, and will lead us to the concept of orbital resonances.

To keep this discussion simple, we will assume that P is confined to the

system’s midplane, and that there are no vertical perturbations,

so Φ1 = Φ1(r, θ, t).

However our results are easily generalized to handle vertical perturbations

(like, say, a spiral bending wave).
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It will also be convenient to Fourier expand Φ1 as in the time–series

Φ1(r, θ, t) =
∞
∑

m=0

φm(r) cos[m(θ − Ωpst)] (3.122)

where m = the azimuthal wavenumber,

φm(r) is the amplitude of the mth perturbation,

and Ωps = the pattern speed, which is the angular velocity at which our

disturbance rotates (like, say, a galactic bar, or an orbiting planet).

If the perturber is a spiral density wave that rotates with a constant

angular velocity Ωps, then its potential Φ1 would be represented as a sin-

glemth term in the above sum, wherem = number of spiral arms in the wave.

If the perturber is a galactic bar, then it too would be represented via a

single mth term in Φ...but which one—what is m for a rotating bar?

(Hint: consider the bar’s density-variations as you go 360◦ in azimuth.).

If the perturber is an orbiting planet,

then all the Fourier terms in Φ1 are present.

However each term usually responsible for exciting a large response by par-

ticle P at discrete, narrow sites in your system—at resonances.
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Figure 3.7: Whirlpool Galaxy, imaged by HST

Figure 3.8: Barred galaxy NGC 1300
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These resonances are often (but not always) spatially segregated;

in that case we need only consider P’s response

to a single mth term in the Fourier expansion of Φ1:

Φ1(r, θ, t) ' φm(r) cos[m(θ − Ωpst)] (3.123)

We justify the above approach more formally by noting that Φ1 is ex-

panded in terms of orthogonal functions. Consequently, our EOM must

be satisfied individually for each mth term in Φ1. If that solution is Rm,

then the general solution for P’s motion is thus the summed response
∑

Rm.

The EOM for particle P is now r̈ = −∇Φ, so

r̂ : r̈ − rθ̇2 = −∂Φ

∂r
(3.124)

θ̂ :
1

r

d

dt
(r2θ̇) = −1

r

∂Φ

∂θ
(3.125)

Again, assume that P’s motion deviates only slightly from a

guiding center r0 = (r0, θ0 + Ω0t, 0) that travels in a circular orbit:

r(t) = r0 + r1(t) (3.126)

θ(t) = θ0 + Ω0t + θ1(t) (3.127)

where Ω2
0 =

1

r

∂Φ0

∂r

∣

∣

∣

∣

r0

(3.128)

and Φ(r, θ, z, t) = Φ0(r, z) + φm(r) cos[m(θ − Ωpst)] (3.129)

Next, linearize the EOM, which means keeping terms to an accuracy that is

first–order in the small quantities r1, θ̇1,∇Φ1, etc

Also, evaluate the perturbing accelerations ∇Φ1 assuming

P’s motion is undisturbed, ie, that it lies at the guiding center r0.
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Then the θ̂ Eqn’ becomes

d

dt
(r2θ̇) ' mφm(r) sinm(θ − Ωpst)|r0 (3.130)

= mφm(r0) sin(mθ0 + ωmt) (3.131)

where ωm ≡ m(Ω0 − Ωps) = Doppler–shifted forcing freq’ (3.132)

Integrate the θ̂ EOM:

r2θ̇ ' (r2
0 + 2r0r1)(Ω0 + θ̇1) = −mφm

ωm
cos(mθ0 + ωmt) + hz (3.133)

and again set the integration constant hz = r2
0Ω0, so

θ̇1 ' −mφm
ωmr2

0

cos(mθ0 + ωmt) −
2Ω0

r0
r1 (3.134)

The r̂ EOM is

r̈1 − (r0 + r1)(Ω0 + θ̇1)
2 ' r̈1 − r0Ω

2
0 − 2r0Ω0θ̇1 − Ω2

0r1 (3.135)

' − ∂Φ0

∂r

∣

∣

∣

∣

r0

− r1
∂2Φ0

∂r2

∣

∣

∣

∣

r0

− ∂φm
∂r

∣

∣

∣

∣

r0

cos(mθ0 + ωmt) (3.136)

and note ∂Φ0/∂r|r0 = r0Ω
2
0 (3.137)

so r̈1 − 2r0Ω0θ̇1 − Ω2
0r1 = − ∂

∂r
(rΩ2)r0r1 −

∂φm
∂r

∣

∣

∣

∣

r0

cos(mθ0 + ωmt) (3.138)

(3.139)

Now insert θ̇1 and collect terms:

r̈1 + κ2
0r1 = −ψm(r0) cos(mθ0 + ωmt) (3.140)

where again κ2
0 = 4Ω2

0 + r
∂Ω2

∂r
(3.141)

and ψm(r) ≡ ∂φm
∂r

+
2mΩ

ωm

φm
r

(3.142)

where ψm is also known as the forcing function.
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Now we have an EOM for a simple harmonic oscillator that is driven by

the ψm term, which is the amplitude of the driving acceleration,

with a driving frequency is ωm(r0) = m(Ω0 − Ωps),

also known as the ‘Doppler–shifted’ forcing frequency,

since it is the frequency of perturbations seen in the reference frame that

corotates P’s angular velocity Ω0.

Note that P’s natural frequency for radial oscillations is κ0.

What happens when the driving frequency |ωm| matches

P’s natural oscillation frequency?

The solution to this inhomogeneous differential eqn’ is r1(t) = re(t) + rf(t),

where re satisfies the homogeneous EOM (no driving forces, ie ψm = 0),

and rf is P’s forced response due to ψm.

The homogeneous part of the solution is of course is familiar epicyclic

motion, re = −R cos(κ0t) = −eer0 cos(κ0t);

this part of P’s motion is sometimes called its free motion,

with ee = its free eccentricity, determined by P’s initial conditions.

The solution for P’s forced motion is

rf(t) = −ψm(r0)

D(r0)
cos(mθ0 + ωmt) (3.143)

where D(r) ≡ κ2 − ω2
m (3.144)

Plug r1 into eqn’ (3.140) and confirm that it is indeed a solution.
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Assignment #5

due ?

at the start of class

1. Solve for P’s azimuthal motion θ1(t).

Insert r1 = re + rf into eqn (3.134) and integrate to obtain

θ1(t) = θe(t) + θf(t) (3.145)

where θe(t) =
2RΩ0

r0κ0
sin(κ0t) (3.146)

and θf (t) = −
(

mφm
ω2
mr

2
0

+
2Ω0Φm

rωmD

)

sin(mθ0 + ωmt), (3.147)

which are P’s free epicyclic motion θe, and its forced motion θf .

2. Treat the Galaxy as a slab of matter of density ρ(r), where r is the

distance from the galactic core. The Sun is in a nearly circular orbit of

radius r0 about this core. Show that its vertical oscillation frequency is

ν0 '
√

4πGρ0 where ρ0 = ρ(r0) ' 0.18 M�/pc3 (see Table 1-1 of B&T).

What is the Sun’s nodal precession period, TΩ = 2π/|Ω̇node|, in units of its

orbital period Torb?
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Figure 3.9: from Wikipedia

Free, forced, and proper orbit elements

In studies of asteroid orbits, the free eccentricity ee is also called an asteroid’s

proper eccentricity (ep in the above figure), which is the amplitude of the

asteroid’s motion that is not due to Jupiter’s perturbations.

Similarly, the proper inclination ie = ip
describes an asteroid’s ‘free’ vertical motions.

What are the clusters seen among the asteroids’ proper elements?

Why don’t you see clusters in osculating orbit elements?

Proper elements are of interest since they are a consequence of all the other

(non–Jovian) forces that have since perturbed asteroids over their 4.5Gyr

history: collisions with other asteroids, stirring by long-gone protoplanets

that may have roamed the early Belt, sweeping secular resonances due to

dispersal of solar nebula, and radial drift due to the YE.

One way to test of models of terrestrial planet formation is to see if they

produce as asteroid belt of debris that

(i.) appears sufficiently depleted (by a factor of ∼ 1000),

and (ii.) has the right distribution of proper orbit elements.
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Figure 3.10: from Nesvory et al 2003.

An asteroid family results when asteroids collide and generate fragments.

The fragment’s free/proper orbit elements are initially similar to the parent,

but subsequent collisions & YE causes those orbits to drift,

smearing the family out in orbit element space.

Which asteroid families are younger? which are older?

Why are there gaps in this figure?

Eos, Themis, and Koronis families formed ∼ 1 Gyr ago,

while Karis cluster formed w/in Koronis family ∼ 107 yrs ago.
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Figure 3.11: IRAS IR map, from Nesvory et al 2006.

The figure shows an IR map of the sky as seen by IRAS. This map has been

filtered to remove the broad & featureless IR emission from interplanetary

dust that extends ∼ ±30◦ above/below the ecliptic;

What are the tilted slashes in this figure?

This filtering enhances the weak zodiacal dust bands that circle the entire

sky; Note that these bands have latitudes ±iβ = ±2.1◦ and ±iγ = ±9.4◦

which happen to be the inclinations of the Karin cluster which lives inside

the Koronis family) and the Veritas family. Why?
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Why does each cluster produce a pair of bands that peak at

latitudes = ± inclination of the source?

Hint: recall Eqn. (3.41): z(θ) = a sin i sin(θ − Ωnode) where θ = longitude.

Why are these dust bands bent?

Lindblad and corotation resonances

Recall that particle P’s forced motion is

rf(t) = −ψm(r0)

D(r0)
cos(mθ0 + ωmt) (3.148)

where ψm(r) ≡ ∂φm
∂r

+
2mΩ

ωm

φm
r

(3.149)

and D(r) = κ2 − ω2
m is P’s ‘distance’ from resonance (in frequency2 units),

ψm = forcing function,

φm = mth Fourier component of disturbing potential Φ1,

and ωm = m(Ω − Ωps) = forcing frequency of the mth disturbance.

A resonance = a site r = r0 where a star’s forced response rf or θf is large.

A Lindblad resonance is the radius r = rL where D(rL) = 0:

ωm = m(Ω − Ωps) = εκ(rLR) where ε = ±1 (3.150)

so Ω(rLR) − Ωps = εκ(rLR)/m (3.151)

is the condition for a Lindblad resonance (LR).

In a planetary environment, we usually call this a

mean motion or a secular resonance; I’ll distinguish the two later.

47



First, define the corotation radius r0 = rCR as the site where the angular

velocity of P’s guiding center, Ω(rCR), matches the pattern speed Ωps;

P would appear to corotate with the disturbance.

Note that most systems (planetary & galactic) have

κ(r) > 0 and an Ω(r) that usually decreases with distance r.

Thus a ε = −1 LR is located where Ω(rL) < Ωps.

The resonance condition, Eqn’ (3.151), would thus be satisfied at some site

rL > rCR, also known as the mth ‘outer’ LR or OLR.

At an OLR, the Doppler–shifted forcing freq’ ωm = m(Ω − Ωps) < 0,

so the crests of the perturbing potential appear to overtake P.

Likewise, the ε = +1 LR requires Ω(rL) > Ωps;

this is the mth inner LR (or ILR) since rILR < rCR;

At an ILR, ωm > 0 and P orbits faster than the disturbing potential.

Note also that P’s forced response rf ∝ ψm has a term ∝ 1/ωm,

so the site where ωm = 0 is known as a corotation resonance, since that is

where r0 = rCR and Ω(rCR) = Ωps, P corotates the disturbance.

So for each m there are a pair of LRs that straddle the CR:
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simple example:

LRs in a barred galaxy having a flat rotation curve

Suppose a barred disk galaxy has a flat rotation curve and a central bar

that rotates with angular velocity Ωps. Find this system’s LRs in terms of

the corotation radius rCR, which is the radius where a star would corotates

with the bar.

Since the circular speed vc = rΩ = constant, a star’s

angular velocity Ω ∝ 1/r can be written as Ω(r) = (rCR/r)Ωps. Then

κ2 = 4Ω2 + r
∂Ω2

∂r
= 2Ω2

ps(rCR/r)
2 (3.152)

so κ =
√

2Ω (3.153)

The LRs are located where Ω − Ωps = εκ/m, so

rLR =

(

1 −
√

2ε

m

)

rCR (3.154)

so the mth OLR is at rOLR = (1 +
√

2/m)rCR,

and the ILR is at rILR = (1 −
√

2/m)rCR.

Obviously, the CR lies at r = rCR.

Where is the m = 1 ILR?
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resonances in planetary systems

The central potential for a planetary system is nearly keplerian, so κ ' Ω,

and the Lindblad resonance condition Ω − Ωps = εκ/m can be written as

Ωps

Ω
' Torb

TCR
=
m− ε

m
(3.155)

where Torb is the particle’s orbital period,

and TCR = 2π/Ωps is the orbital period at corotation.

The next section will show that if the perturber is an orbiting secondary

(planet, satellite, etc) of semimajor axis as,

then the corotation radius is rCR = as,

and the pattern speed is Ωps = Ωs = the secondary’s angular velocity.

Such resonances are called mean motion (MMR) or commensurability

resonances, since the mean motion are ratios of similar whole numbers.

Since Ω(r) = n(a) ∝ a−3/2, MMRs are located at

aMMR '
(

m− ε

m

)2/3

as (3.156)

where ε = ±1.

In homework, you will show that if the secondary has an eccentricity es > 0,

then its radial motion gives rise to additional MMRs having

ε→ ε` where ε = ±1 and ` = 1, 2, 3...

For instance, the m = 3, ε = +1, ` = +2 resonance with Jupiter is called

the 1:3 resonance, since Torb:Ts =1:3.

Since as = 5.2 AU, this resonance lies at a1:3 = (1/3)2/3as = 2.50 AU,

and is responsible for clearing a prominent gap in the asteroid belt

(see Fig. 3.10); this is one of the famous Kirkwood gaps.

50



The 2:5 resonance has m = 5, ε = +1, ` = +3,

and is at a2:5 = (2/5)2/3as = 2.82 AU,

which is the site of another Kirkwood gap in Fig. 3.10.

Evidently the Solar System is dense with an infinite sea of MMRs,

but we shall see that those higher–order resonances

tend to be weaker by higher powers of es.

Note also that the region nearest a planet gets very dense

with high–m MMRs, since aMMR accumulates at as as m→ ∞.

Assignment #5

due ?

at the start of class

3. Eqn’ (3.156) gives an unreliable result for the m = 1 ILR. Show that this

resonance at r = rILR is actually located where ˙̃ω(rILR) = Ωps.

4. A secondary orbits a star with a semimajor axis as. Show that high–m

LRs having m � 1 lie ∆am ' −2εas/3m away from a secondary’s orbit,

and that the distance between adjacent resonances is ' 2as/3m
2.
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Problem 3 locates a secular resonance:

If the secondary is precessing at the rate ˙̃ωs = Ωps (perhaps due to pertur-

bations from other planets, or planetary oblateness, etc), then this secular

resonance is the site where a particle’s longitude of periapse precesses at the

same rate as the secondary’s, ie ˙̃ω = ˙̃ωs, which can pump of the particle’s

eccentricity.

Lastly, I note that if the perturber’s orbit is inclined wrt’ the system mid-

plane, then its vertical forcing can excite inclinations at vertical resonances

analogous to the MMRs.

Similarly, a vertical secular resonance exists at the site where there is a match

in the precession rates for the ascending nodes: Ω̇node = Ω̇s.

Figure 3.12: from Knezevic et al 1991.
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Forcing function ψm for a point–mass perturber

These results apply to any orbiting perturber:

a planet, satellite, or companion star.

Recall that particle P’s forced motion is

rf(t) = −ψm(r0)

D(r0)
cos(mθ0 + ωmt) (3.157)

where ψm(r) ≡ ∂φm
∂r

+
2mΩ

ωm

φm
r

(3.158)

A quantitative understanding of P’s motion will require knowing φm and

the disturbing frequency ωm, which we get from a Fourier expansion of the

disturbing potential Φ1:

Φ1(r, θ, t) =
1

2
φ0(r) +

∞
∑

m=1

φm(r) cos[m(θ − Ωpst)] (3.159)

Calculate φm for a system having a primary of massmp orbited by secondary

ms having a perturbing potential Φ1 = −Gms/∆.

Assume the system is coplanar (for now), so

∆2 = r2 + r2
s − 2rrs cos(θ − θs) = distance2 between ms and particle P.
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Assume the secondary is on a circular orbit: rs = as and θs = Ωst, so µs is

crossing the x–axis at time t = 0.

Also recall that we are to evaluate the perturbations at P’s

guiding center at r(t) = a and θ(t) = θ0 + Ω0t.

To calculate φm, multiply Φ1 by cos(m′θ),
where m′ = arbitrary integer, and integrate over all θ:

−
∫ π

−π

Gms

∆
cos(m′θ)dθ =

∑

m φm(r)

∫ π

−π
cos(mθ −mΩpst) cos(m′θ)dθ (3.160)

= π
∑

m

φm cos(mΩpst)δmm′ = πφm′ cos(m′Ωpst) (3.161)

so

φm = − Gms

πas cos(mΩpst)

∫ π

−π

cos(mθ)dθ

[1 + β2 − 2β cos(θ − θs)]1/2
where β ≡ r

as
(3.162)

= −2Gms

as

cos(mΩst)

cos(mΩpst)

∫ π

0

cos(mφ)dφ

(1 + β2 − 2β cosφ)1/2
where φ = θ − θs (3.163)

The time–dependence must disappear, so identify the pattern speed with

the secondary’s mean motion: Ωps = Ωs.

Next, define the Laplace coefficient as

b(m)
s (β) ≡ 2

π

∫ π

0

cos(mφ)dφ

(1 + β2 − 2β cosφ)s
(3.164)

so

φm(r) = −Gms

as
b
(m)
1/2 (β) (3.165)

where β = r/as. Actually, this result is correct only for m ≥ 2 terms.

The m = 0 term needs to be multiplied by 1/2—see Eqn’ (3.159).
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the indirect potential

The m = 1 term also needs to be corrected for the fact that our origin is

attached to the primary, which itself is accelerated by the secondary.

Let rCOM be P’s position vector relative to the system’s COM.

NII says r̈COM = −∇Φ where Φ = Φ0 + Φ1 is the system’s potential.

Since r = rCOM − rp, our EOM is r̈ = −∇(Φ0 + Φ1) − r̈p, also written as

r̈ = −∇(Φ0 + Φ1 + φid) (3.166)

where ∇φid ≡ r̈p =
Gms

r2
s

r̂s (3.167)

is the called the indirect potential φid; this additional perturbation accounts

for the fact that origin is co–moving with the primary.

The indirect potential only appears in systems where a moving perturber is

offset from the origin, as in a planetary system or a binary star system.

If the perturber is coincident with the origin (like a galactic bar),

then φid = 0.
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Assignment #5

due ?

at the start of class

5. The indirect potential can be written

φid =
Gms

r3
s

r · rs. (3.168)

Confirm this by showing that this φid does indeed satisfy Eqn’ (3.167).

6. Show that

db
(m)
s

dβ
= s

[

b
(m−1)
s+1 (β) − 2βb

(m)
s+1(β) + b

(m+1)
s+1 (β)

]

(3.169)

7. Set β = 1 + x, and show that when |x| � 1,

b
(m)
1/2 (β) ' 2

π
K0(m|x|) (3.170)

db
(m)
s

dβ
' −2m

π
sgn(x)K1(m|x|), (3.171)

where the Kν are modified Bessel functions of order ν.

See Goldreich & Tremaine (1980), ApJ, 241, p. 428 for a helpful hint.

56



Thus

φid =
Gms

as
β cos(θ − θs) (3.172)

and φ1 → −Gms

as
[b

(m)
1/2 (β) − β] (3.173)

So

φm(r) = − Gms

(1 + δm0)as
[b

(m)
1/2 (β) − δm1β] (3.174)

accounts for the corrections to the m = 0 & m = 1 terms.

The forcing function for an m ≥ 2 disturbance,

evaluated at resonance (ωm = εκ) is

ψm≥2(r) ≡ ∂φm
∂r

+
2mΩ

ωm

φm
r

(3.175)

= −Gms

a2
s





db
(m)
1/2

dβ
+ 2mε

Ω

κ

b
(m)
1/2

β



 (3.176)

For a particle orbiting at high–m resonance that lies near the secondary,

we can use the results of problem 4

(which says the resonance is |x| = |∆am/as| ' 2/3m away from as),

and problem 7:

ψm�1(r) ' −2εm

π

Gms

a2
s

[2K0(2/3) +K1(2/3)] (3.177)

= −2εfm

π

Gms

a2
s

(3.178)

where f ' 2.52 is the coefficient introduced in Eqn. (2.123).

Although the above result is formally valid only for m� 1 resonances,

comparison with an exact calculation of ψm shows that the above provides

a reliable estimate of ψm down to m = 2, with errors. 25%
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the forced eccentricity

Now we can calculate the particle’s forced motion. Recall Eqn’ (3.143):

rf(t) = −ψm(r0)

D(r0)
cos(mθ0 + ωmt) (3.179)

where D(r) ≡ κ2 − ω2
m and ωm = εκ (3.180)

At a LR, D = 0, and linearized theory breaks down since rf → ∞. In

reality, a more sophisticated nonlinear theory will show that rf stays finite

at exact resonance.

However, we can calculate rf for particle P orbiting just off exact resonance;

do this by Taylor expanding D(r) about resonance: r = rL + ∆r:

D(r) ' D(rL) + ∆r
dD

dr
= 3(εm− 1)Ω2∆r

r
(3.181)

Plugging this into rf in the m� 1 approximation yields

rf (t) ' −2fµs
3πx

as cos(mθ0 + εκt) (3.182)

where µs ≡ ms/mp is the perturber’s mass in units of the primary’s, and

x = ∆r/as = P’s fractional distance from the mth LR.

The complete solution for the particle’s motion radial motion is

rf(t) = r0 + re(t) + rf(t) (3.183)

= r0[1 − ee cosκt− ef cos(mθ0 + εκt)] (3.184)

where ee is the particle’s free (or epicyclic) eccentricity, and

ef(x) =
rf
r0

' 2fµs
3π|x| (3.185)

is P’s forced e that is excited by the secondary.
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First, note that ef is singular at resonance;

this is an unphysical consequence of using linearized EOM.

Had we preserved small terms to second–order in the (more complicated)

EOM, we would find that ef remains finite as x→ 0.

I suspect that our linearized sol’n, Eqn’ (3.185), is reliable where ef . 0.2,

ie, at distances |x| & 3µs beyond exact resonance.

It is straightforward to derive similar eqn’s for P’s azimuthal coordinate:

θ(t) = θ0 + Ωt + θe(t) + θf(t), where θe and θf are P’s free (epicyclic) and

forced motions.

Likewise, if P and ms have a mutual inclination, one can solve the linearized

EOM for z̈, which will yield z(t) = z0 + ze(t) + zf(t) where ze represents

P’s free (epicyclic) vertical displacement, and zf would represent the forced

motions excited by a nearby vertical resonance.

Lastly, I note that the preceding results were derived for motion in a nearly

keplerian potential having κ ' Ω.

However, one could easily generalize the preceding results for a particle or-

biting in a non–keplerian potential, and that would revise φm, ψm, and ef
by additional factors of ∼ κ/Ω, which is ∼

√
2 in a galaxy having a flat

rotation curve. Thus the results just obtained for a planetary system would

also provide a rough estimate for, say, a star perturbed by another galactic

point–mass perturber, such as a GMC, or a satellite galaxy.
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Assignment #5

due ?

at the start of class

8. a) Show that φ0(r) is equivalent to the gravitational potential of a

uniform ring of mass ms and radius as evaluated in the ring plane a distance

r from its center.

b). Use Gauss’ planetary eqns’ to show that φ0 term in a planet’s gravita-

tional potential will cause a particle’s longitude of periapse to precess at the

time–averaged rate

˙̃ω ' 1

4
µsβb

(1)
3/2(β)n (3.186)

where µs = planet/primary mass ratio, β = a/as is the particle/planet

semimajor axes, and n is the particle’s mean motion. Assume the particle

is in a low–e orbit. Do the φm≥1 terms drive any long–term precession?

Explain.

Additional problems pending...
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Results of an Nbody simulation (MERCURY, available at

http://star.arm.ac.uk/∼jec/mercury ) of 1000 particles perturbed by a

µs = 10−6 secondary (third of an Earth–mass). The particles were initially

on circular orbits, and the figure shows their osculating orbit elements, e(a),

at time t = 2000 orbits later. Various mean motion resonances are indicated,

and the lower figure zooms in on the 3:2 resonance.

Also plotted is Eqn’ (3.185), the particle’s expected forced e’s.

Why do the osculating e’s differ from the expected ef by factors of ∼ 2?

Why is there no disturbance at the 5:3?
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Resonance Trapping

So far we have considered orbital evolution due to drag forces

(like orbit decay due to PR drag), and resonant perturbations.

Lets put these phenomena together to consider the orbital drift of a particle

due to a drag force, which can deliver it to a Lindblad resonance.

This will lead to the phenomenon known as resonance trapping.

Lets consider the motion of a dust grain that is perturbed by an

orbiting secondary of mass µ2. The grain’s orbit will decay PR drag.

[Alternately, we could have considered the motion of, say, a recently–

consumed satellite galaxy whose orbit is decaying via dynamical friction,

which could deliver the satellite to a LR with a bar (assuming galactic tide

didn’t already disrupt the satellite...). Although the force law might differ

some from PR drag, this problem and its solution will be quite similar to

our dust grain’s motion.]

The PR drag acceleration is Eqn. (3.69)

aPR = arr̂ + aθθ̂ (3.187)

where ar = −2aradṙ

c
≡ −2αnṙ (3.188)

and aθ = −aradrθ̇
c

= −αan2 (3.189)

where arad = βg? =
βGM?

r2
' βan2 (3.190)

where the constant β is the radiation pressure/stellar gravity ratio,

and α ≡ βan/c � 1 is a small dimensionless coefficient for PR drag.
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The grain is also disturbed by a secondary’s mth LR,

so its EOM is r̈ = −∇Φ + aPR where

Φ(r, θ, t) = Φ0(r) + Φ1(r, θ, t) ' Φ0 + φm(r) cos[m(θ − Ωpst)] (3.191)

= Φ0 + Re[φme
im(θ−Ωpst)] (3.192)

where we will use the complex notation eiφ = cosφ+ i sinφ for convenience.

Assume nearly circular orbits:

r(t) = r0 + r1(t) (3.193)

θ(t) = θ0 + Ω0t + θ1(t) (3.194)

where r1 and θ1 are assumed small, and

Ω2 =
1

r

∂Φ0

∂r
(3.195)

and κ2 = 3Ω2 +
∂2Φ0

∂r2
= 4Ω2 + r

∂Ω2

∂r
(3.196)

are the grain’s angular and epicyclic frequencies2.

In component form, this EOM is

r̂ : r̈ − rθ̇2 = −∂Φ

∂r
− 2αΩ0ṙ (3.197)

θ̂ :
1

r

d

dt
(r2θ̇) = −1

r

∂Φ

∂θ
− αr0Ω

2
0 (3.198)

where I have replaced semimajor axis a→ r0 and mean motion n→ Ω0.

Next, linearize this EOM, ie, drop small2 terms, and evaluate the

perturbations at the grain’s guiding circle, r0 = (r0, θ0 + Ω0t, 0):

r̈1 + (κ2
0 − 4Ω2

0)r1 − 2r0Ω0θ̇1 ' − ∂φm
∂r

∣

∣

∣

∣

r0

ei(mθ0+ωmt) − 2αΩ0ṙ1 (3.199)

r0θ̈1 + 2Ω0ṙ1 ' −imφm(r0)

r0
ei(mθ0+ωmt) − αr0Ω

2
0 (3.200)

where it is understood that once these eqn’s are solved,

we preserve only the real parts.
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Note that these are the same EOM for a particle orbiting near an mth LR,

but with a drag force added to the RHS.

The RHS has oscillatory (eiωmt) and secular (steady) driving terms (ṙd, etc).

Thus we anticipate a solution having oscillatory & secular parts:

r1(t) = re(t) + rf(t) + rd(t) (3.201)

θ1(t) = θe(t) + θf(t) + θd(t) (3.202)

where (re, θe) describes the grain’s unforced epicyclic motion that satis-

fies the unforced EOM (with φm = 0); these solutions resemble Eqns.

(3.105) but with their amplitudes (or free eccentricities) damped by factor

e−αΩ0t = e−t/Td where Td = 1/αΩ0 = Torb/2πα the e–fold damping

timescale. We will ignore these damped transient motions.

The (rf , θf) are the forced oscillatory motions excited by the sinusoidal po-

tential; they will again have the form

rf(t) = Re[Rme
i(mθ0+ωmt)] (3.203)

and θf(t) = Re[Θme
i(mθ0+ωmt)] (3.204)

where the complex constants Rm,Θm are the amplitudes of the grain’s

forced motions.

The grain’s secular drift due to the drag is described by (rd, θd).

Plug these anticipated solutions into the linearized EOM,

and collect oscillatory terms on the RHS, and secular terms on the left:

ei(mθ0+ωmt)

[

(κ2 − ω2
m − 4Ω2 + 2iαΩωm)Rm − 2ir0Ω0ωmΘm +

∂φm
∂r

]

r0

= −r̈d + 3Ω2rd + 2r0Ω0θ̇d − 2αΩ0ṙd

and ei(mθ0+ωmt)

[

−rω2
mΘm + 2iΩωmRM +

imφm
r

]

r0

= −r0θ̈d − 2Ω0ṙd − αr0Ω
2
0 (3.205)
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Note the the RHS is oscillatory, and the LHS varies secularly with time t.

What does this tell us about the RHS? the LHS?

What about the stuff in the []?

Differentiate the upper RHS and solve for θ̈d:

θ̈d =

...
r d

2r0Ω0
− 3Ω0ṙd

2r0
+
αr̈d
r0

(3.206)

Plug this into lower RHS:

−
...
r d

2Ω0
− αr̈d −

1

2
Ω0ṙd = αr0Ω

2
0 (3.207)

what is the solution to this eqn’?

Earlier we found that PR drag has ṙd = constant, so try r̈d = 0 =
...
r d,

which yields ṙd = −2αr0Ω0 = orbit decay rate due to PR drag.

Comparing this to Eqn (3.62) of Assignment #4 shows that our results

indeed equivalent to our earlier findings when e� 1.

The grain’s secular tangential motion is

θ̈d = 3αΩ2
0 (3.208)

so θ̇d(t) = 3αΩ2
0t (3.209)

and θd(t) =
3

2
αΩ2

0t
2 (3.210)

while rd(t) = r0 − 2αr0Ω0t (3.211)

Evidently, the drag delivers a grain into smaller, faster orbits,

causing its longitude to lead ahead of an unperturbed grain.
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The grain’s forced motions Rm and Θm are obtained by setting the [] = 0:

Θm =
2iΩ0Rm

r0ωm
+

imφm
(r0ωm)2

(3.212)

and thus Rm =
−ψm

D + 2iαΩωm
=

−ψmD + 2iψmαΩωm
D2 + (2αΩωm)2

(3.213)

where D(r) = κ2 − ω2
m (3.214)

and ψm(r) =
∂φm
∂r

+
2mΩ

rωm
φm(r) (3.215)

is the familiar forcing function ψm,

with all quantities are evaluated at the guiding center, r = r0.

This of course is the familiar solution to a damped, driven SHO,

where α is the dimensionless damping coefficient.

When α = 0, we recover our earlier results for a particle at an mth LR.

The drag force alters the particle’s motion in 2 ways:

(1.) P’s forced motion is no longer singular at a D = 0 LR:

Re(rf) =
−ψm[D cos(mθ0 + ωmt) + 2αΩωm sin(mθ0 + ωmt)]

D2 + (2αΩωm)2
(3.216)
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(2.) near exact resonance when D ' 0, P’s response is ∼ 90◦ out of phase

with the perturber’s forcing, which varies as cosωmt

In the absence of damping (α = 0), P’s response is either in phase, or out

of phase by 180◦.

This is equivalent to saying that the particle’s forced longitude of periapse

is aligned or anti–aligned with the perturber at conjunction:

Recall from your studies of the damped SHO: if the particle’s motion gets

out of phase from the driver, then the driver can do work on the particle,

possibly trapping it at resonance.

If resonance trapping does occur, this is possible only if the particle achieves

a balance of torques: the torque due to the drag force is counterbalanced by

the gravitational torque exerted by the secondary.
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resonance trapping via a torque balance

Calculate the specific torque that the secondary m2

exerts on a particle at the mth LR:

T2 = r×(−∇Φ1) = −Re

[

∂Φ1

∂θ
ẑ

]

, (3.217)

so T2 = mφm(r) sin[m(θ − Ωpst)] (3.218)

is the torque that m2 exerts on particle P at r = (r, θ).

Next, insert r(t) = r0 + r1(t) and θ(t) = θ0 + Ω0t + θ1(t)

into the above and Taylor expand to first order:

T2 ' m

[

φm + r1
∂φm
∂r

]

r0

sin(mθ0 + ωmt +mθ1) (3.219)

' mφm sin(mθ0 + ωmt) +m
∂φm
∂r

r1 sin(mθ0 + ωmt) +m2φmθ1 cos(mθ0 + ωmt)

(3.220)

where henceforth all quantities are evaluated at r = r0.

In the above,

r1(t) = re(t) + Re[Rme
i(mθ0+ωmt)] + rd(t) (3.221)

= re(t) + Re(Rm) cos(mθ0 + ωmt) − Im(Rm) sin(mθ0 + ωmt) + rd(t)

(3.222)

and likewise for θ1(t).

Now, mentally time–average T2 over the forcing cycle ∆t = |2π/ωm| = Torb.

Do we need to account for the grain’s epicyclic motions re, θe,

when calculating the torque T2?

Do the grain’s secular motions rd, θd contribute to T2?
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Next, time–average torque T2 over one forcing cycle, noting that only the

grain’s forced oscillatory motions make a net contribution since

< sin2(mθ0 + ωmt) > =
1

2
=< cos2(mθ0 + ωmt) > (3.223)

so < T2 > = −1

2
m
∂φm
∂r

Im(Rm) +
1

2
m2φmRe(Θm) (3.224)

where Re(Θm) = − 2Ω

rωm
Im(Rm) (see Eqn’ 3.212) (3.225)

so < T2 > = −1

2
mψmIm(Rm) (3.226)

= − mψ2
mαΩωm

D2 + (2αΩωm)2
(3.227)

= − εmψ2
mαΩκ

D2 + (2αΩκ)2
(3.228)

since ωm = εκ at a LR; this is the

time–averaged specific torque that the secondary exerts on the grain.

Note that the sign of < T2 > is −εα.

Which resonances can trap grains—the ILR or the OLR?

What if we changed the sign on the drag force, and replace α → −α.

What happens then?

Now calculate the torque the drag exerts on the grain—how do I do this?

Recall Eqn’ (2.138) from Assignment #3:

T ′
d =

Td
m

=
1

2
r0Ω0ṙd = −α(r0Ω0)

2 (3.229)

where T ′
d is the specific torque on the grain due to drag.
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What is the condition for trapping the grain at the secondary’s LR?

The torques on the grain must balance: < T2 > +T ′
d = 0.

That balance also tells you how far from resonance the grain gets trapped

− εmψ2
mαΩκ

D2 + (2αΩκ)2
= α(rΩ)2 (3.230)

so D2(x) =
mψ2

mαΩκ

α(rΩ)2
− (2αΩκ)2 (3.231)

at an ε = −1 OLR.

In the m� 1 approximation,

D(x) ' 3εmΩ2x (3.232)

ψm ' −2εfmµs
π

Ω2as (3.233)

so x2 '
(

2fµs
3π

)2

−
(

2α

3m

)2

(3.234)

is the fractional distance2 from resonance where the grain gets trapped.

Note that resonance trapping is possible, ie, x2 > 0,

when the drag force is sufficiently weak, ie, α < αc where

αc =
fm3/2µs

π
(3.235)

is the critical drag parameter necessary for trapping at the mth OLR.

What happens to those grains that have α > αc?
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application: Kuiper Belt dust

Consider dust generated by colliding Kuiper Belt Objects (KBOs),

which spiral inwards due to PR drag.

Lets assumed the grain has already crossed Neptune’s m = 1 OLR (ie, the

2:1 MMR), which is weakened some by the indirect potential (see Eqn’ 3.174).

Neptune has mass µs ' 5 × 10−5 in solar units, and as ' 30 AU.

At Neptune’s m = 2 OLR (the 3:2 MMR),

αc =
fm3/2µs

π
' 1 × 10−4 = βc

(

rΩ

c

)

' 0.2

(

1µm

Rc

)

√

Gm2

asc2
(3.236)

' 4 × 10−6

(

1µm

Rc

)

(3.237)

So Rc ' 0.04µm is the threshold radius for

trapping dust grains at Neptune’s m = 2 OLR.

So what happens to grains larger than Rc? smaller than Rc?

Caveat: the above size threshold is probably somewhat unreliable, since our

estimate of the parameter β (the ratio of radiation pressure/solar gravity

ratio) was acquired in the geometric optics limit (ie, the grain sizes are

> wavelength of sunlight). Thus we are probably overestimating the PR

drag parameter α ∝ β some for grains smaller than ∼ 1µm. Due to this

complication, it would be prudent to merely assume that grain larger than

∼ 1µm get trapped at Neptune’s m = 2 OLR.

Nonetheless, it is evident that Neptune should be quite effective at trapping

dust at its MMRs. However, telescopic searches for a faint IR glow from to

this anticipated Kuiper Belt dust have so far not yielded any detections...
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We have just quantified the conditions under which a particle whose orbit

decays due to do the drag acceleration of the form

aPR = −2αΩṙr̂− αrΩ2θ̂ (3.238)

which is the drag law for PR drag.

It turns out that most drag laws relevant to planetary phenomena

have the form

aPR = −2α1Ωṙr̂− α2rΩ
2θ̂ (3.239)

If you were to plug this drag force into Gauss’ planetary equations, you

would find that α1 controls the rate of eccentricity damping, and α2 controls

the orbital decay rate (assuming the αi > 0).

Examples of such drag forces include:

• atmospheric drag experienced by a low–altitude satellite

• aerodynamic drag that a planetesimal feels while orbiting within the

solar nebula gas disk

• the torque that a disk exerted on an embedded companion

(ie, satellite orbiting near a planetary ring, a planet embedded in a

circumstellar gas disk, etc) mimics a drag force.

• a star suffering dynamical friction with a galactic disk

Although our preceding results were derived for a PR–like drag force

(α1 = α2), you could easily rederive other trapping criteria for any alternate

drag force having α1 6= α2.
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Assignment #5

due ?

at the start of class

9. Show that particles orbiting near a secondary’s LR will cross that res-

onance when |x| < xc, where x is the particle’s fractional distance from

resonance, and

where xc ≤
√

2fµs
3m

, (3.240)

is the threshold distance for resonance–crossing, where µs is the secondary’s

mass.

(Thus particles on each side of the resonance can crash into each other when

|x| ≤ xc. Similarly, stars orbiting sufficiently near a galactic LR can interact

with like stars on the other side of the LR.)

10. A dust grain of radius R = 1µm drifts into Neptune’s m = 2 OLR.

Does it get trapped there? If so, how far from resonance? Evaluate x and

its forced eccentricity ef . Is this orbit stable—will this grain persist in this

orbit? Explain.
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Suspected cases of resonance trapping

1. Three of the Galilean satellites, Io, Europa, & Ganymede, inhabit the

Laplace resonance, ie, in mutual 2:1 resonances. This could be due to outward

orbital evolution due to tides with Jupiter, or inwards migration due to

interactions with a long–gone circumplanetary disk.
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Bryden/Lin 2000
http://www.ucolick.org/~bryden/2planet

Figure 3.13: model of the Gliese 876 exoplanetary system

2. Hydrodynamic simulation of a pair of recently-formed giant planets that

are interacting with the circumstellar gas disk from which they formed; this

sim’ indicates that torques from the dissipating gas disk can drive giant

planets into a 2:1 resonance lock.
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Figure 3.14: ε Eridani at submillimeter wavelengths.

3. Numerical simulations by Quillen and Thorndike (2002) show this clumpy

circumstellar dust ring could be due to dust delivered (via PR drag) to 5:3

and 3:2 resonances with a Neptune–mass planet at a = 40 AU.
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Figure 3.15: KBO orbit elements

4. Many KBOs inhabit 2:1 & 3:2 MMRs with Neptune. This is usually in-

terpreted as evidence for Neptune’s outwards migration (due to interactions

with the natal planet–forming disk). This evolution is a bit different from

the PR drag problem, since the planet’s migration delivers the resonance

to the particle, trapping it at resonance and pumping up its e with further

migration.
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