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Fluid Dynamics & Astrophysical Disks

Thus far we have employed a Lagrangian approach to study the dynamics

of gravitating systems; that approach is most convenient when interested in

the evolution of a handful of discrete particles.

But when your system is crowded with many bodies (stars in a galaxy,

molecules in a circumstellar disk, etc), it will be convenient to treat your

system as a continuous fluid or particle gas, since all fluids are just swarms

of discrete particles. Note that our use of continuum fluid mechanics will

only apply to spatial scales � particle spacings.

These lectures will address the following:

1. Distinctions between Eulerian & Lagrangian dynamics.

2. The fluid EOM (continuity & Euler’s eqn),

gravity, pressure, viscosity, enthalpy, the equation of state, sound waves, etc.

3. Fluid disks: galactic, circumstellar, and circumplanetary disks,

their equilibrium state, and viscous evolution.

4. Stability analysis for a gravitating fluid.

5. Spiral wave theory.

6. Planet migration, time permitting.
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Eulerian vs Lagrangian dynamics

The Lagrangian approach to dynamics usually begins with NII: r̈ = −∇Φ(r)

where r is the position vector of particle P, and Φ its potential. In Lagrangian

dynamics, the goal is usually to solve the EOM for P’s trajectory, r(t):

The particle’s velocity is v = ṙ,

and r and v are to be regarded as functions of time t only.

This approach is most useful when studying the motion of a discrete particle.

Note that you effectively “keep your eye on the particle” when you calculate

its velocity v(t) at some time t in its trajectory.

This is distinct from the Eulerian (or fluid) approach to dynamics,

where one regards r as pointing to some fixed spot,

where you wish to monitor the fluid velocity v(r, t) as that fluid rushes by:

This discussion is excerpted from B&T, Appendix 1.E,

and Chapter 2 of Faber’s Fluid Dynamics for Physicists
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Suppose this fluid has some property f = f(r, t);

f could, for example, represent the fluid’s density ρ.

Now lets calculate df/dt in the Lagrangian sense, which is the time rate–of–

change in f that occurs while following the motion of some fluid parcel.

At time t0, the fluid parcel is at r0 and has velocity v,

and it has a quantity f(r0, t0) = f0.

A little while later, t = t0 + ∆t, and the fluid parcel is at r = r0 + v∆t,

where its f = f(r0 + v∆t, t0 + ∆t).

In Cartesian coordinates, f = f(x0 + vx∆t, y0 + vy∆t, . . . , t0 + ∆t),

which is Taylor expanded as

f(r, t) = f(r0, t0) +
∂f

∂x

∣

∣

∣

∣

r0

vx∆t + . . . +
∂f

∂t

∣

∣

∣

∣

r0

(4.1)

so
df

dt
= lim

∆t→0

f(r, t) − f(r0, t0)

∆t
=
∂f

∂x
vx +

∂f

∂y
vy +

∂f

∂z
vz +

∂f

∂t
(4.2)

or
df

dt
= (v · ∇)f +

∂f

∂t
(4.3)

df/dt is sometimes called the convective, or Lagrangian derivative of f ,

since it is the time rate–of–change in f that you sense while following the

motion of the fluid parcel at r(t).

Noting that the fluid velocity is v = vxx̂ + vyŷ + vzẑ,

it then follows that the fluid parcel’s acceleration can be written as

dv

dt
= (v · ∇)v +

∂v

∂t
(4.4)

Note, however, that (v · ∇)v is a vector operator. Its particular form (eqns

1B53–1B56 of B&T) depends on your choice of coordinate system (cartesian,

cylindrical, etc.)
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The Fluid EOM

Now lets derive the principle eqn’s for fluid dynamics:

the continuity eqn, and Euler’s eqn.

the continuity eqn’

Consider a distribution of matter of density ρ(r, t)

which has a velocity field v(r, t).

Now consider a volume V that is enclosed by a arbitrary surface S:

The total mass inside V is

M =

∫

ρ(r′, t)dV ′ =

∫

dx

∫

dy

∫

dzρ(x′, y′z′), (4.5)
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Also let da = n̂da = a small differential area element on the surface S,

with n̂ = unit vector normal to S.

Suppose there is some matter flowing into or out of the volume V.

This flow has a flux = ρv (mass/area/time).

After time ∆t, mass ∆m = ρv · da∆t will flow across area da,

so dm/dt = −ρv · da = rate at which mass flows across surface element da;

with the sign indicating that an outward flow causes the mass in V to

decrease:

Thus the total mass M inside V changes at the rate

dM

dt
=

∫

V

∂ρ

∂t
dV ′ =

∫

S

dm

dt
= −

∫

S

ρv · da (4.6)

Now apply the divergence theorem, Eqn’ (3.55), to the RHS:
∫

V

∇ · AdV =

∫

S

A · da (4.7)
∫

V

∇fdV =

∫

S

fda (4.8)

Consequently
∫

V

[

∂ρ

∂t
+ ∇ · (ρv)

]

dV ′ = 0 (4.9)
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This must be true for any arbitrarily–shaped volume V .

What does this then say about the integrand?

∂ρ

∂t
+ ∇ · (ρv) = 0, (4.10)

which is the continuity equation. It simply says that mass is conserved.

What if mass were not conserved?

What if mass were being converted to, so, energy, or vise-versa?

Euler’s eqn’

Let p(r, t) = pressure at point r at time t.

The total pressure–force that volume V exerts on the surrounding material

external to V is
∫

S

pda′ (4.11)

Consequently Fp = −
∫

S

pda′ (4.12)

is the force on volume V due to the pressure of the surrounding environment.

Let Fe = −M∇Φ(r, t) = sum of all other conservative forces that are

external to V , where M =
∫

V ρdV
′ = total mass of V .
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Newton’s 2nd law of motion is then

M
dv

dt
= Fp + Fe = −

∫

S

pda′ −M∇Φ (4.13)

so

∫

V

ρ
dv

dt
dV ′ = −

∫

S

pda′ −
∫

V

ρ∇ΦdV ′ (4.14)

But

∫

S

pda′ =

∫

V

∇pdV ′ by div’ formula, Eqn’ (4.8) (4.15)

so

∫

V

(

ρ
dv

dt
+ ∇p + ρ∇Φ

)

dV ′ = 0 (4.16)

which must hold for any arbitrary volume V , hence the integrand is zero:

dv

dt
= −∇p

ρ
−∇Φ (4.17)

= (v · ∇)v +
∂v

∂t
by Eqn’ (4.4) (4.18)

so
∂v

∂t
+ (v · ∇)v = −∇p

ρ
−∇Φ (4.19)

which is Euler’s eqn’ for an inviscid (frictionless) fluid,

also known as the momentum equation.

What if this fluid were subject to an additional nonconservative acceleration

a? For instance, a could represent a drag force.

If the fluid has some viscosity ν, then additional terms appear in the RHS,

and Euler’s eqn’ becomes the Navier–Stokes eqn’;

we will see viscosity again later when we consider a viscous accretion disk.
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the equation of state

The use of Euler’s eqn’ also requires choosing an equation of state (EOS),

which relates the pressure p to density ρ or temperature T

(or perhaps entropy S) .

We will employ a barotropic EOS,

which assumes that pressure depends only on the fluid’s density:

p(r, t) = p(ρ) where ρ = ρ(r, t) (4.20)

This EOS is common to many astrophysical fluids. Some examples are:

(i.) isothermal (T =constant in time and/or space) ideal gas which obeys

p = ρkBT/m. You can regard an isothermal system as being attached to

an external heat bath, which allows heat (energy) to flow into/out of your

system to preserve constant T . Example: a fluid that cools via thermal

radiation at the same rate that it is heated by a nearby star. Note that the

isothermal EOS does not necessarily conserved energy.

(i.) isentropic (constant entropy) gas which obeys p = Kργ,

which is a polytropic EOS. An isentropic system is also adiabatic, which

means that no heat (energy) is lost or gained. An isentropic system conserves

energy. Use this EOS when you system is isolated from the rest of the

universe, and when there is no cooling due to thermal radiation.
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For a barotropic fluid, it will be convenient to replace the pressure p(ρ)

with the enthalpy h(ρ) which appears in thermodynamics;

enthalpy = specific energy due to the fluid’s pressure.

Appendix 1.E.c of B&T uses the fundamental laws of thermodynamics to

show that the fluid’s enthalpy can be written as

h(ρ) ≡
∫ ρ

0

1

ρ′
dp(ρ′) =

∫ ρ

0

1

ρ′
dp

dρ′
dρ′ (4.21)

so
dh

dρ
=

1

ρ

dp

dρ
(4.22)

and ∇h(ρ(r, t)) =
dh

dρ

∂ρ

∂x
x̂ + . . . =

dh

dρ

3
∑

i=1

∂ρ

∂xi
x̂i (4.23)

=
1

ρ

∑

i

dp

dρ

∂ρ

∂xi
x̂i =

1

ρ

∑

i

dp

dxi
x̂i (4.24)

=
1

ρ
∇p (4.25)

which relates the fluid’s pressure gradient to its enthalpy gradient.

Inserting this result into Euler’s eqn then yields

∂v

∂t
+ (v · ∇)v = −∇(h + Φ) (4.26)

for a barotropic fluid.

Evidently, replacing the system’s pressure p with the enthalpy h allows us to

combine pressure with the potential Φ to form a ‘fluid potential’ h + Φ.
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linearize the dynamical equations

Lets consider an inviscid, gravitating, barotropic fluid.

Its motions must satisfy three dynamical equations

∂ρ

∂t
+ ∇ · (ρv) = 0 continuity eqn’ (4.27)

∂v

∂t
+ (v · ∇)v = −∇(h+ Φ) Euler’s eqn’ (4.28)

∇2Φ = 4πGρ (4.29)

where the last is Poisson’s eqn (3.60),

with Φ being the system’s gravitational potential.

Lets linearize these equations of motion, which means we are going to assume

that some small perturbation is going to push the system a small distance

from some undisturbed state that is time independent, ie,

ρ(r, t) = ρ0(r) + ερ1(r, t) (4.30)

v(r, t) = v0(r) + εv1(r, t) (4.31)

p(r, t) = p0(r) + εp1(r, t) (4.32)

h(r, t) = h0(r) + εh1(r, t) (4.33)

Φ(r, t) = Φ0(r) + εΦ1(r, t) (4.34)

where quantities having the 0 subscript are the system’s undisturbed equilib-

rium state, and the 1 subscript is the system’s response to the perturbation,

which is also assumed small ie, ε� 1.

If the perturber were, say, a galactic bar (or a planet), then ε would likely

be the bar/galaxy (or planet/primary) mass ratio.
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Insert these trial solutions into the dynamical eqn’s & Taylor expand to O(ε):

For instance, the continuity eqn is

∂(ρ0 + ερ1)

∂t
+ ∇ · [(ρ0 + ερ1)(v0 + εv1)] = 0 (4.35)

Since ε is an arbitrary parameter,

the O(ε0) and O(ε1) terms must separately sum to zero, so

O(ε0) :
∂ρ0

∂t
+ ∇ · (ρ0v0) = 0 (4.36)

which is the usual continuity eqn’; you likewise recover the usual

Euler & Poisson eqn’s for ρ0,v0,Φ0, etc,

while the dynamical equations for the O(ε1) terms are

∂ρ1

∂t
+ ∇ · (ρ0v1) + ∇ · (ρ1v0) = 0 (cont’ eqn’) (4.37)

∂v1

∂t
+ (v1 · ∇)v0 + (v0 · ∇)v1 = −∇(h1 + Φ1) (Eulers eqn’) (4.38)

∇2Φ1 = 4πGρ1 (Poisson eqn’) (4.39)

We can get rid of the h1 in the above by noting that

h(ρ) = h(ρ0 + ερ1) ' h(ρ0) + ε
dh

dρ

∣

∣

∣

∣

ρ0

ρ1 = h0 + εh1 (4.40)

⇒ h1 =
dh

dρ

∣

∣

∣

∣

ρ0

ρ1 =
dp

dρ

∣

∣

∣

∣

ρ0

ρ1

ρ0
with Eqn’ (4.22) (4.41)

where the constant dp/dρ|ρ0 is obtained from your EOS.

The above constitute the linearized dynamical eqn’s for the

disturbances ρ1 and v1 that occur in an inviscid, gravitating, barotropic fluid.
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simple example: sound waves in a barotropic fluid

Lets perturb a non–gravitating fluid whose unperturbed state is stationary.

What is ∇Φ? What is v0?

Our linearized fluid eqn’s thus become

∂ρ1

∂t
+ ρ0∇ · v1 = 0 (cont’ eqn’) (4.42)

∂v1

∂t
= −∇h1 = − 1

ρ0

dp

dρ

∣

∣

∣

∣

ρ0

∇ρ1 (Euler eqn’) (4.43)

These eqn’s tell us how the fluid velocity v1 changes

if we squeeze the fluid somewhere such that ρ1 6= 0.

To solve these coupled eqn’s, differentiate the cont’ eqn’ wrt t,

and then insert the Euler eqn:

∂2ρ1

∂t2
− v2

s∇2ρ1 = 0 (4.44)

where v2
s ≡

dp

dρ

∣

∣

∣

∣

ρ0

(4.45)

This of course is the wave eqn’. For a 1D sound waves, the solution for the

fluid’s motion has the form ρ1(x, t) = A cos(kx−ωt). Inserting this into the

wave eqn’ yields the familiar dispersion relation for traveling waves:

ω2 = v2
sk

2 (4.46)

where ω = waves’ angular frequency, k = wavenumber, and vs = ω/k = λ/T

is the soundspeed, where wavelength λ = 2π/k, period T = 2π/ω.

If the fluid is an ideal gas, then p = ρkBT/m,

and the soundspeed2 is v2
s = dp/dρ|ρ0 = kBT/m for our 1D system.
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Gravitational instabilities in astrophysical fluids

We will perform a linearized stability analysis of the fluid equations for three

types of systems:

• an infinite, uniform fluid, which can suffer a Jean’s instability,

• gravitational instabilities in a differentially rotating disk

(planetary or galactic), which can suffer a ring instability,

• gravitational instabilities in fluid cylinders,

which will lead to the sausage instability that can occur in astrophysical

jets, and (strangely enough) comet Shoemaker–Levy 9.

Jean’s instability

Apply the fluid EOM of an infinite fluid that, in its undisturbed state,

has a uniform density ρ0(r) = constant.

The fluid is also assumed static, so v0(r0) = 0, p(r) = constant,

and Φ0(r) = constant.

Although this seems like plausible initial conditions, we immediately run

into problems since Euler’s eqn’ tells us that ∇Φ0 = 0 (since v0 = 0).

However this contradicts Poisson’s eqn’, ∇2Φ0 = 4πGρ0,

except for the uninteresting case of where ρ0 = 0.

But this inconsistency is an artifact of the unphysical assumption

that the fluid has an infinite extent.

If we instead gave our fluid real boundaries, then ∇Φ0 6= 0.

However we would rather not have to deal with these boundaries,

and their boundary conditions...
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B&T (Section 5.1) suggests sidestepping these details by invoking the ‘Jean’s

swindle’, that is, to assume that Poisson’s eqn’ only applies to the perturbed

quantities Φ1 and ρ1.

It turns out that this ‘Jean’s swindle’ is valid provided you apply it to

regions far from the fluid’s boundaries, and that you consider spatial scales

λ that are small compared to that over which ∇Φ varies.

In that case, the linearized fluid eqn’s for a barotropic fluid are

∂ρ1

∂t
+ ρ0∇ · v1 = 0 (CE) (4.47)

∂v1

∂t
= −∇ (h1 + Φ1) (4.48)

= −v
2
s

ρ0
∇ρ1 −∇Φ1 (EE) (4.49)

∇2Φ1 = 4πGρ1 (PE) (4.50)

To derive the Jean’s instability, calculate ∂(CE)/∂t,

and then insert the EE and PE, which yields

∂2ρ1

∂t2
− v2

s∇2ρ1 − 4πGρ0ρ1 = 0 (4.51)

Note that when the fluid is non–gravitating, ie G = 0,

and we get the classical wave eqn’, which admits sound waves.

And for a gravitating fluid with G 6= 0,

the particular solution to the EOM can also be oscillatory:

ρ1(r, t) = <
[

Cei(k·r−ωt)
]

(4.52)

As long as the arguments of the exponential are real,

then Eqn’ (4.52) describes spherical wave.

Regard this as a gravitationally–modified soundwave

that has a complex amplitude C(k)= fluid’s response to an

imposed disturbance having a wavenumber k, frequency ω.
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Choose a spherical coordinate system, and examine these ‘waves’ at some site

downstream of the disturbance, so k · r = kr and ρ1 = C(k) cos(kr − ωt).

Inserting this trial solution into the EOM yields the system’s dispersion

relation:

ω(k)2 = v2
sk

2 − 4πGρ0 (4.53)

You should regard the frequency ω as a function of the perturbation’s

wavenumber k or its wavelength λ = 2π/k.

So when the perturbation has a wavelength/wavenumber such that ω2 > 0,

the fluid’s response is oscillatory, indicating that the fluid is gravitationally

stable.

However if the perturbation has a wavenumber such that ω(k)2 < 0,

ie, ω = i|ω|, then

ρ1 = <
[

Cei(kr−i|ω|t)
]

∝ e|ω|t (4.54)

which indicates that the fluid is gravitationally unstable since the distur-

bance causes ρ1 to blow up exponentially over timescale τc ∼ 2π/|ω|.

The dispersion relation (4.53) tells us that a higher sound speed, and hence

a higher temperature (since v2
s = dp/dρ ∝ T ) tends to stabilize the fluid

against gravitational collapse, while a higher density ρ0 tends to encourage

instability.

In other words, pressure gradients are stabilizing,

while gravity is destabilizing.

If the fluid is indeed unstable, then the gravity term in eqn’ (4.53) dominates,

|ω| ∼
√

4πGρ0 and the fluid density grows as ρ1 ∝ e|ω|t, which corresponds

to a gravitational collapses over an e–fold timescale of τc ∼ 1/
√

4πGρ0.
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This is roughly the time needed for a particle to sink to the center of a

uniform cloud of density ρ0:

Consider the motion of a particle at the outer edge of a sphere of radius r

and mass M :

r̈ = −GM
r2

= −4π

3
Gρ0r = −ω2

0r (4.55)

which has solution r(t) = A cos(ω0t) (4.56)

so τff =
2π

ω0
=

√

3π

Gρ0
(4.57)

is the particle’s free–fall timescale.

In should be noted that any arbitrary perturbing acceleration ap will not be

characterized by a single wavelength λ or wavenumber k.

Nonetheless, any arbitrary disturbance can always be Fourier decomposed as

ap(r) =

∫

c(k)eikrdk, (4.58)

and the fluid’s response to this more general perturbation will have the form

ρ1(r, t) =

∫

C(k)ei(k·r−ωt)d3k. (4.59)

where the response amplitudes C(k) are proportional to the perturbing am-

plitudes c(k).

16



Note that this arbitrary perturbation still satisfies the same dispersion rela-

tion:

We call the threshold wavenumber kJ where ω(kJ)
2 = 0

the Jean’s wavenumber:

kJ =

√

4πGρ0

v2
s

and λJ =
2π

kJ
=

√

πv2
s

Gρ0
(4.60)

where λJ is the Jean’s wavelength.

The dispersion relation shows that an infinite fluid is susceptible to

gravitational collapse due to all perturbations, including those of but a mi-

croscopic amplitude, that have wavenumbers k < kJ or wavelengths λ > λJ .

However, a real fluid blob will have a finite extent `,

so it can only be perturbed over wavelengths of λ ≤ `.
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Thus if the blob suffers an infinitesimal perturbation have a spatial scale of

` > λ > λJ , those perturbations will grow exponentially, causing the fluid

to break up into contracting blobs of size ∼ λJ and masses

MJ ∼ 4π

3
ρ0

(

λJ
2

)3

∼ π

6
ρ0

(

πv2
s

Gρ0

)3/2

(4.61)

If the fluid is an ideal gas, v2
s = kBT/m and

MJ ∼ π

6
ρ0

(

πkBT

Gρ0m

)3/2

(4.62)

where m = molecule mass.

Example: the dense core of a giant molecular cloud has a hydrogen number

density nH ∼ 108 atoms/cm3, ρ0 = mHnH ∼ 2× 10−16, and T ∼ 150 K, so

if it is more massive than MJ ∼ 10 M� it will contract and ultimately form

clusters of stars, each containing perhaps ∼ 10 solar–mass protostars. This

collapse will occur quite quickly in only τc ∼
√

3π/Gρ0 ∼ 104 years.

However if the cloud has a size R � λJ and mass M � MJ , that cloud

will be immune to the destabilizing long–wavelength perturbations λJ > R.

Thus λJ and MJ should be regarded as upper limits on the size & mass of

an interstellar cloud.

This limit can also be regarded as a lower limit on a stable cloud’s

temperature Tmin:

Tmin =

(

6M

πρ0

)3/2
Gρ0m

πKBT
(4.63)

a cloud with T < Tmin is gravitationally unstable.

18



Gravitational stability of a rotating disk

Lets consider the gravitational stability of a thin disk in orbit about some

center; our results will apply to a nearly keplerian circumstellar disk orbiting

a young star, but also to a (non–keplerian) disk, such as stars orbiting a

galaxy’s center.

Use the linearized fluid EOM to do the stability analysis.

Consider the disk’s unperturbed state—steady, circular, coplanar motion:

v0 = r0Ω0θ̂ where Ω2 =
1

r

∂Φ0

∂r
fluid angular velocity2 (4.64)

and ρ0 = ρ(r0) is the density of the unperturbed fluid,

at the guiding center at r = r0,

and Φ0 is its unperturbed gravitational potential.

Now reach in and perturb this system slightly:

ρ→ ρ0 + ερ1(r, t)

v → v0 + εv1(r, t), etc., where ε� 1.

Lets disturb this system so that the perturbations are sinusoidal:

ρ1(r, t) = ρ2e
i(kr−ωt), where the amplitude ρ2 can be infinitesimally small;

the other perturbations v1, Φ1 will have similar forms.

This is equivalent to ‘seeding’ your disk with some small sinusoidal density

perturbation of magnitude ρ2, wavenumber k, wavelength λ = 2π/|k|:
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Note also that we have assumed an axisymmetric perturbation.

Note that we could have considered a more general

non–axisymmetric disturbance having the form

ρ1(r, θ, t) = ρ2e
i(kr+mθ−ωt) (4.65)

where m is the familiar azimuthal wave number,

equivalent to seeding the disk with an m–armed spiral density pattern.

Had we tackled this more general problem, we would find that most disks

are stable against non–axisymmetric perturbations having m ≥ 1,

so we will concentrate only on the disk’s response to m = 0 perturbations.

We will then insert this perturbation into the EOM, and derive the system’s

dispersion relation ω(k) = system’s angular frequency.

First, note that our perturbation is assumed to be sinusoidal.

Is this appropriate? Why?

Suppose we find that ω(k) is real for all perturbations having any k.

Is this stable or unstable?

But what if ω(k) has an imaginary part? Does the sign matter?

We begin with the fluid EOM: the CE, EE, and PE.

They form a coupled set of rather complicated–looking PDEs.

However the EOM simplify considerably when the disk is infinitesimally thin:

ρ(r, z, t) = σ(r, t)δ(z) (4.66)

where δ(z) is the Dirac delta function (B&T, Appendix 1.C),

and the disk surface density of matter is obtained by integrating vertically

through the disk along the z axis:

σ(r, t) =

∫ ∞

−∞
ρ(r, z′, t)dz′ (4.67)
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We can also make our 3D linearized CE, Eqn (4.37),

2D by vertically integrating through the disk:

∂σ1

∂t
+ ∇ · (σ0v1) + ∇ · (σ1v0) = 0 (4.68)

However our linearized PE, Eqn’ (4.39) requires special handling:

∇2Φ1 =
1

r

∂

∂r

(

r
∂Φ1

∂r

)

+
1

r2

∂2Φ1

∂θ2
+
∂2Φ1

∂z2
= 4πGρ1 (4.69)

in cylindrical coord’s; see B&T Eqn’ (1B–50).

Note that the RHS is zero when z 6= 0,

yet the individual terms on the left are probably nonzero.

Note that the potential Φ1 associated with the density perturbation ρ1

must satisfy two constraints:

(i.) ∇2Φ1 = 0 in regions where z 6= 0, and

(ii.) Φ1 has the form Φ1(r, 0, t) = Φ2e
i(kr−ωt) in the z = 0 plane.

Lets consider the trial solution Φ1(r, z, t) = Φ2e
i(kr−ωt)−|kz|,

which clearly satisfies point (ii.) .

But can it satisfy(i.)?

Check by inserting Φ1 into the PE, and vertically integrate from z = −a to

+a, where |a| � λ is some tiny distance just above/below the disk plane:
∫ a

−a
∇2Φ1dz

′ ' 2a

r

∂

∂r

(

r
∂Φ1

∂r

)

+
∂Φ1

∂z

∣

∣

∣

∣

z=+a

− ∂Φ1

∂z

∣

∣

∣

∣

z=−a
= 4πGσ1 (4.70)
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Since a is arbitrary, take the limit where a→ 0.

Since e−|kz| = e−sz|k|z where sz = sgn(z),

∂Φ1

∂z
= −sz|k|Φ1 (4.71)

so Φ1 = −2πGσ1/|k| (4.72)

Evidently, a thin disk has a rather simple relationship between its

perturbed density σ1 and its gravitational potential Φ1.

Lets examine the linearized CE:

∂σ1

∂t
+ ∇ · (σ0v1) + ∇ · (σ1v0) = 0 (4.73)

where v0 = rΩθ̂ = unperturbed fluid velocity (4.74)

Our trial solutions for the perturbed quantities will have the form

σ1 = Sei(kr−ωt) (4.75)

and v1 = vrr̂ + vθθ̂ (4.76)

= Vre
i(kr−ωt)r̂ + Vθe

i(kr−ωt)θ̂ (4.77)

To use the CE, we will need the divergence of the generic vector

A = Arr̂ +Aθθ̂ +Azẑ in cylindrical coordinates. According your studies of

vector calculus (and Eqn’ 1B–45 of B&T),

∇ · A =
1

r

∂

∂r
(rAr) +

1

r

∂Aθ

∂θ
+
∂Az

∂z
(4.78)

So what is ∇ · (σ0v1)? and ∇ · (σ1v0)?

With this in mind, the CE then becomes

−iωσ1 +
1

r

∂

∂r
(rσ0vr) = 0 (4.79)

so σ1 =
1

irω

∂

∂r
(rσ0vr) (4.80)
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Next, lets anticipate that any unstable disturbances in the disk will have a

radial wavelength is small compared to the disk radius r,

so λ/r = 2π/|kr| � 1.

You will confirm this assumption in Assignment #6.

Lets also assume that the unperturbed disk surface density varies slowly

with distance r, perhaps like a power–law: σ0(r) ∝ r−α where α ∼ O(1).

Since |kr| � 2π, the CE becomes

σ1 =
[−(α− 1) + ikr]σ0vr

irω
' kσ0vr

ω
(4.81)

Now recall the linearized EE, Eqn’ (4.38):

∂v1

∂t
+ (v1 · ∇)v0 + (v0 · ∇)v1 = −∇(h1 + Φ1) (4.82)

−iωv1 + (v1 · ∇)v0 + (v0 · ∇)v1 = −∇
(

v2
sσ1

σ0
+ Φ1

)

(4.83)

= −∇
(

v2
s −

2πGσ0

|k|

)

σ1/σ0 (4.84)

= −i(v2
sk − 2πGσ0sk)(σ1/σ0)r̂ (4.85)

= −i(v2
sk

2 − 2πGσ0|k|)(vr/ω)r̂ (4.86)

since h1 = v2
sρ1/ρ0 = v2

sσ1/σ0 in the z = 0 plane,

where Φ1 = −2πGσ1/|k|, and sk = sgn(k).

So now we are down to a single PDE containing a single unknown, v1.

But we still have to deal with terms like (v1 · ∇)v0,

which requires the use of Eqn’ (1B–54) of B&T:

(v1 · ∇)v0 = −vθΩr̂ + vr
∂(rΩ)

∂r
θ̂ (4.87)

and (v0 · ∇)v1 = −Ωvθr̂ + Ωvrθ̂ (4.88)

Please confirm this on your own.
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Insert these results into the EE, and consider the θ̂ part of that eqn’:

vθ =
2Ω + r∂Ω

∂r

iω
vr =

2(Ω − A)

iω
vr =

2iB

ω
vr = −iκ

2vr
2ωΩ

(4.89)

where the Oort A&B constants of Eqn’s (3.120–3.121) are invoked:

A = −(r/2)(∂Ω/∂r), B = A− Ω, and κ2 = −4BΩ.

Plug this result into the r̂ part of EE:

−iωvr − 2Ωvθ = −i
(

ω − κ2

ω

)

vr = −i(v2
sk

2 − 2πGσ0|k|)(vr/ω) (4.90)

so ω2 = v2
sk

2 − 2πGσ0|k| + κ2. (4.91)

This is the dispersion relation (DR)

for a gravitating, rotating, pressure–supported disk.

These results apply to a nearly keplerian system (like a circumstellar disk),

and a non–keplerian one (like a galactic disk.

Recall that ω(k) is the frequency of the disk’s oscillations due to perturba-

tions having a wavenumber k and wavelength λ = 2π/|k|.

What conditions must be satisfied to be assured of gravitational stability?

Inspect this dispersion relation: is pressure stabilizing or destabilizing?

What about gravity?

And rotation?

Consider two extreme cases:

the non–gravitating disk: is it stable or unstable?

the pressureless (or dynamically cold) disk—is it stable?
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Assignment #6

due Thursday April 6

at the start of class

1. a.) Consider a disk that is gravitationally unstable. Show that the

fastest–growing unstable mode in this disk has a wavenumber

|kQ| ≡
πGσ0

v2
s

(4.92)

b.) The stability of a disk can be quantified by its

Toomre stability parameter,

Q ≡ κvs
πGσ0

(4.93)

(adapted from Toomre, 1964). Show that a disk is stable when Q ≥ 1,

and is gravitationally unstable otherwise.

c.) Show that the fastest–growing disturbance in an unstable disk grows as

S ∝ et/τQ, where

τQ =
1

κ
√

Q−2 − 1
(4.94)

is the e–fold timescale for growth. Thus the instabilities in a disk having, say

Q ∼ 0.5 and κ ∼ Ω, will manifest themselves in an orbital–period timescale.

d.) Show that the disk scale height (ie, the vertical half–thickness of the disk)

is h ∼ vs/Ω. Next, recall that we assumed |kr| � 2π in our derivation of

instabilities, and that we still need to confirm the validity of that assumption.

Do this by showing that unstable modes do indeed have |kr| � 2π when

h� r. In other words, our system really needs to be disklike (which requires

h� r), rather than spherical or ellipsoidal (which would have h ∼ r).

26



2. a.) Obtain a rough estimate of Q for the solar nebula, which is the

circumsolar gas disk from which the Solar System formed. Assume the

solar nebula had a mass Mdisk ∼ 0.01M� (which is typical of the disk that

form around young stars), and that the bulk of this mass resides interior

to Saturn’s orbit (where most of the Solar System’s mass resides). Treat

the nebula as a blackbody whose temperature is determined by solar heating.

b.) Saturn’s main A& B rings have a surface density of σ ∼ 100 gm/cm2.

What is the minimum vertical thickness for Saturn’s rings, h/r, in fractional

units? How does that compare to the fractional thickness of a sheet of

paper? Note that the thickness of Saturn’s rings probably is close to the

limit you obtained here.

3. A resonance trapping problem is also pending...

Spiral density waves

We will examine the physics of a self–interacting system in greater detail.

In fact, we have already examined several self–interacting systems:

• sound waves that propagate in a pressure–supported astrophysical fluid;

• a self–gravitating fluids that are susceptible to gravitational instabilities,

when they are too cool.

We will now examine the acoustic (ie, pressure) and/or gravity waves that

a perturber can launch in a rotating disk—spiral density waves.

We anticipate that these waves might get launched at a Lindblad resonance,

since that is a site where disk particles have their eccentricities pumped up

by a perturber.

We will see that if those particles at resonance can communicate their dis-

turbed motions to adjacent particles (via pressure and/or gravity),

then that disturbance ca propagate away as a wave.
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We will tackle the general problem of waves in a variety of disks:

• pressure–dominated gas disks having Q� 1,

such as a circumstellar gas disk

• gravity–dominated Q ∼ 1 particle disks:

– waves in Saturn’s rings that are launched by a satellite;

(an example of waves in a nearly keplerian system)

– waves in a disk galaxy that are launched by a central bar;

(a non–keplerian example)

the linearized fluid EOM

Since the disk is self–gravitating, the system’s total gravitational potential

is Φ = Φ0 + Φ1 = Φ0 + Φd + Φp,

where Φd is the gravitational potential due to the disturbance in the disk,

and Φp is the potential due to the perturber

(which could be a planet in a circumstellar disk, or a bar in a galactic disk).

As usual, we will assume weak disturbances: |∇(Φd + Φp)| � |∇Φ0|.

The fluid velocities are again v = v0 + v1,

where v0 = rΩθ̂ is the fluid’s undisturbed circular velocity,

and v1 is the velocity of the fluid’s perturbed motions.

We will also assume the disk is thin, so that ρ(r, θ, z, t) = σ(r, θ, t)δ(z),

where σ(r, t) = σ0(r)+σ1(r, t) = unperturbed + perturbed surface densities.

The perturber’s gravitational potential can always be Fourier expanded as

Φp(r, θ, t) =
∞

∑

m=0

φpm(r)eim(θ−Ωpst) (4.95)

(see Eqn’ 3.122, and note our switch to complex notation)

where Ωps is the pattern speed.
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From our earlier discussion of Lindblad resonances,

we know that if the perturber is an orbiting secondary (ie, planet),

then Ωps = secondary’s angular velocity Ωs.

And if the perturber is a bar, then Ωps = bar’s rotational angular velocity.

We also know that Lindblad resonances tend to be segregated spatially,

so we can assume that a fluid parcel orbiting near the mth resonance

senses only the mth term in the sum:

Φp(r, θ, t) ' φpm(r)eim(θ−Ωpst). (4.96)

These perturbations are sinusoidal in time and azimuth,

and we anticipate the disk will to respond similarly,

with perturbed quantities having the form:

σ1(r, θ, t) = S(r)eim(θ−Ωpst) = perturbed disk surface density (4.97)

v1 = vrr̂ + vθθ̂ = p’ed fluid velocities (4.98)

= Vr(r)e
im(θ−Ωpst)r̂ + Vθ(r)e

im(θ−Ωpst)θ̂ (4.99)

Φd(r, θ, t) ' φdm(r)eim(θ−Ωpst) = p’ed gravitational potential. (4.100)

The linearized CE for a 2D disk is Eqn’ (4.73):

∂σ1

∂t
+ ∇ · (σ0v1) + ∇ · (σ1v0) = 0 (4.101)

where again we need the divergence of σ0v1 and σ1v0 using Eqn’ (4.78).

What is ∇ · (σ0v1)?

∇ · (σ1v0)?
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Since ∂/∂t→ −imΩps, the CE becomes

CE: iωmσ1 +
1

r

∂

∂r
(rσ0vr) +

imσ0

r
vθ = 0 (4.102)

where ωm = m(Ω − Ωps) is the familiar doppler–shifted forcing frequency,

Eqn’ (3.132).

The linearized EE for a disk is Eqn’ (4.82)

∂v1

∂t
+ (v1 · ∇)v0 + (v0 · ∇)v1 = −∇

(

v2
s

σ0
σ1 + Φd + Φp

)

(4.103)

Use Eqn’ (1B–54) of B&T to evaluate the convective operators:

(v1 · ∇)v0 = −Ωvθr̂ + vr
∂(rΩ)

∂r
θ̂ (4.104)

and (v0 · ∇)v1 = Ω(imvr − vθ)r̂ + Ω(imvθ + vr)θ̂. (4.105)

Be sure that you are able to confirm this step on your own.

The radial and angular parts of the EE thus becomes

r̂·EE: iωmvr − 2Ωvθ = − ∂

∂r

(

v2
s

σ0
σ1 + Φd + Φp

)

(4.106)

θ̂·EE:

[

∂(rΩ)

∂r
+ Ω

]

vr + iωmvθ =
κ2

2Ω
vr + iωmvθ = −im

r

(

v2
s

σ0
σ1 + Φd + Φp

)

(4.107)

where the [ ] = 2(Ω −A) = −2B = κ2/2Ω according to page 24.

Lastly, the linearized PE is

∇2Φd = 4πGρ1 (4.108)
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the tight–winding approximation

So we have three nasty–looking PDEs (CE, r̂·EE, θ̂·EE)

to describe our four unknowns: vr, vθ,Φ
d, σ1.

These eqn’s simplify considerably in the tight–winding limit, which assumes

that the waves’ radial wavelength λ is smaller that the disk scale–length r.

Equivalently, we will assume that |kr| � 2π, where wavenumber |k| = 2π/λ.

The tight–winding approximation approximation is an excellent one for

studies of spiral waves in planetary rings.

For instance, waves in Saturn’s rings have λ ∼ 10−4r.

However this assumption is only marginally satisfied in a circumstellar gas

disk, which has density wavelengths of λ ∼ 0.2r.
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For galactic spirals, the tight–winding approximation is clearly questionable,

since λ ∼ r in these systems. Despite this, we will still make this assumption

when we apply our findings to a spiral galaxy.

It turns out that if you compare the linearized theory for spiral waves,

obtained in the tight–winding limit, and then compare those results to a

more exact theory (obtained numerically, perhaps), our results will still be

a good indicator of wave phenomena in spiral galaxies.

Because of this, it has been said that the tight–winding approximation

approximation, |kr| � 2π, works better than we deserve...
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the PE

The PE for tightly–wound spiral waves is

∇2Φd =
1

r

∂

∂r

(

r
∂Φd

∂r

)

+
1

r2

∂2Φd

∂θ2
+
∂2Φd

∂z2
(4.109)

' ∂2Φd

∂r2
+
∂2Φd

∂z2
= 4πGσ1δ(z) (4.110)

Recall that we obtained the same eqn’ when we considered gravitational

instabilities in a disk, so we anticipate that

Φd ∝ e−|kz|=−sz|k|z where sz = sgn(z), and k(r) is the wavenumber.

Thus when z 6= 0, the PE tells us

∂2Φd

∂z2
= |k|2Φd (4.111)

so
∂2Φd

∂r2
= −|k|2Φd (4.112)

which can satisfied by
∂Φd

∂r
= ikΦd (4.113)

In fact, if k were a constant, then Φd would be sinusoidal in r, ie, wavelike.

But keep in mind that k might vary with r...

Since k(r) can vary with r, the above can be solved via a WKB approx-

imation; WKB is shorthand for the solution to Schrödinger eqn’ given by

Wentzel, Kramers, & Brillioun:

Φd(r, θ, t) = A(r, θ, t)e
i
∫ r
r0
k(r′)dr′

(4.114)

where k(r) is the wavenumber,

and A(r, θ, t) is the amplitude of the wave of wavelength λ = 2π/|k|,
and r0 = resonance radius.

In the WKB approximation, you assume that the wave amplitude A(r) varies

slowly over spatial scales much larger than the wavelength λ,

so ∂Φd/∂r ' ikΦd, as is required above.
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We will also assume that all the perturbed quantities, σ1, vr, vθ
have a WKB form.

With these thoughts in hand, we can again use our trick of vertically inte-

grating the PE over some tiny distance a� λ,

and then taking the limit as a→ 0:

∂Φd

∂z

∣

∣

∣

∣

z=a

+
∂Φd

∂z

∣

∣

∣

∣

z=−a
= −2|k|Φd = 4πGσ1 (4.115)

so σ1 = −|k|Φd

2πG
(4.116)

but kΦd = −i∂Φd

∂r
(4.117)

so σ1 =
isk

2πG

∂Φd

∂r
(4.118)

where sk = sgn(k). This is our linearized PE in the tight–winding limit,

upon making the WKB approximation.

Now write the CE and EE in the tight–winding limit:

CE: iωmσ1 + σ0
∂vr
∂r

+
imσ0

r
vθ = 0 (4.119)

r̂·EE:
v2
s

σ0

∂σ1

∂r
+ iωmvr − 2Ωvθ = − ∂

∂r

(

Φd + Φp
)

(4.120)

θ̂·EE:
imv2

s

rσ0
σ1 +

κ2

2Ω
vr + iωmvθ = −im

r

(

Φd + Φp
)

(4.121)

This is a system of 3PDEs in three unknowns: the disk’s perturbed velocities

vr, vθ, and the surface density σ1 ∝ ∂Φd/∂r.

The general solution to this problem is given in Goldreich & Tremaine

(1978). Although this problem is analytic, the solution is a bit complicated,

and we won’t do it here...
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There are, however, two useful limiting cases:

(i.) A pressure–dominated disk where self–gravity is unimportant. Cir-

cumstellar gas disks around young stars, which have a stability parameter

Q � 1, are pressure–dominated. This limit is obtained by setting Φd = 0

in the above EOM. The solution is given in Ward (1986), which shows that

pressure–driven spiral density waves are launched at a LR.

(ii.) A gravity–dominated disk having Q ∼ 1 can have gravity–driven spiral

density waves launched at LRs in the disk. This limit is obtained by setting

vs = 0. Gravity–dominated waves occur in planetary rings, and can also

occur in a stellar galactic disk. The solution in this limit is given in Shu

(1984).

Solving the amplitude of a spiral wave requires solving eqn’s 4.119 for σ1.

With that solution, you could then calculate the torque that the perturber

exerts on the disk, and then consider how the disk & perturber mutually

shepherd each other (ie, push each other around) due to the resulting

angular momentum exchanged between disk & perturber.

If the perturber were a planet, you could then assess the rate at which the

disk might drive type I planet migration. But if the perturber is massive

enough to open a gap in the disk, then type I motion stalls, and type II

migration begins. These issues are of great importance to studies of planet

and satellite formation, as well as the origin of the orbits of extra–solar

planets.

However, will simply solve for the dispersion relation for spiral waves, which

will tell us about the properties of these waves, downstream of the resonance.
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DR for spiral density waves

Assume that our perturber has already managed to launch a wave at a LR,

and lets focus our attention to the downstream part of the wave that is

already far from resonance.

Consider the EOM for the disk at site where the perturber’s influence is now

small compared to disk’s internal forces.

Do this by setting Φp = 0 in the EOM, eqn’ (4.119).

As usual, the DR is obtained by inserting our assumed solutions for the

disk’s perturbed quantities, S,Φd, Vr, Vθ, into the EOM (4.119) all of which

are assumed to have the WKB form

σ1(r, θ, t) = S(r)e
i
∫ r
r0
k(r′)dr+imθ−imΩpst, (4.122)

(4.123)
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But first, lets confirm that the above WKB form can indeed represent a

spiral density wave.

Do this by mentally putting your finger at some spot (r, θ) in a spiral arm,

where σ1(r, θ) is maximal. Then move your finger outwards a small radial

distance ∆r and a small angular distance ∆θ, such that the spiral arm stays

under your finger.

As you trace out the spiral arm,

the surface density under your finger should stay constant, so

σ1(r + ∆r, θ + ∆θ, t) ' σ1(r, θ, t)e
i(k∆r+m∆θ) ' constant (4.124)

so
∆θ

∆r
' − k

m
(4.125)

The sketches show that you get an m–armed ‘leading’ spiral pattern when

the wavenumber k < 0, and a ‘trailing’ spiral pattern when k > 0.
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Now lets derive the DR for spiral density waves. Begin by noting that deriva-

tives of our perturbed quantities that have the WKB form yield

∂σ1

∂r
' ikσ1 in the tight–winding limit (4.126)

so the CE is σ1 + (krvr +mvθ)
σ0

rωm
' 0 (4.127)

Which term in the parentheses dominates?

To answer that,

you first have to know how the radial vr compares to the tangential vθ.

How do they compare for an isolated particle orbiting at a LR?

See eqn’s 3.143–3.145.

Thus in the tight–winding limit (|kr| � 2π),

vr ' −ωm
k

σ1

σ0
(4.128)

Next, plug this result into the radial EE, first noting that

∂Φd

∂r
= −isk2πGσ1 (from Eqn’ 4.118), (4.129)

which yields vθ =
i

2Ωk

(

v2
sk

2 − 2πGσ0|k| − ω2
m

) σ1

σ0
(4.130)

Next, eliminate Φd from the EOM using eqn’ (4.116): Φd = −2πGσ1/|k|.

Inserting all these results into the θ̂ part of EE then yields
(

1 − 2imΩ

krωm

)

(2πGσ0|k| − v2
sk

2) = D(r) = κ2 − ω2
m (4.131)

after a bit of algebra.

D(r) of course is the familiar frequency distance from exact resonance.
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How do the terms in the first parentheses compare in the tight–winding limit?

Then ω2
m ' v2

sk
2 − 2πGσ0|k| + κ2 (4.132)

Lastly, note that the time dependence of all perturbed quantities vary as

σ1 ∝ e−imΩpst = e−iωt where ω ≡ mΩps is the angular rate at which the

spiral density pattern rotates.

Since ωm = m(Ω − Ωps) = mΩ − ω,

the DR for spiral density waves can be written

(ω −mΩ)2 = v2
sk

2 − 2πGσ0|k| + κ2 (4.133)

What is the azimuthal wavenumber m of an axi–symmetric disturbance

(one that is ring–like) in the disk?

Note that when we consider an axi–symmetric waves in our disk, we recover

the DR for gravitational instabilities in the disk, Eqn’ (4.91).

Now lets correct an earlier error.

In our derivation of instabilities in disk, I claimed on page 20 that we did

not need to consider non–axisymmetric disturbances having m ≥ 1 because

disks were stable against such perturbations.

That is incorrect. Eqn’ (4.133) shows that non–axisymmetric m ≥ 1

disturbances are no more destabilizing than axisymmetric disturbances

having m = 0.
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Graphical analysis of the spiral wave DR

The DR just derived contains *lots* of information about the properties of

spiral density waves.

We can extract much of that info by simply sketching the DR, Eqn’ (4.131):

D(r) = κ2 − ω2
m = 2πGσ0|k| − v2

sk
2 (4.134)

where D(r) is the distance from a LR where D(r) = 0,

and ωm = mΩ − ω = εκ,

where ε = +1(−1) at the inner (outer) LR.

Another useful quantity is the waves’ group velocity: vg = ∂ω/∂k. If you

recall your past studies of traveling waves, the group velocity is the rate at

which energy (or angular momentum) is transmitted by a traveling wave.

Note that the group velocity is easily confused with the wave’s

phase velocity: vp = ω/k.

The distinction between the two is explained in Appendix 1.E.4 of B&T.
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A spiral wave is launched somewhere in the disk were D(r) = 0,

and it travels ‘downstream’ where D(r) 6= 0.

A sketch of the DR shows that it admits 1 or 2 possible solutions:

• a small |k| solution—‘long’ waves, since wavelength λ = 2π/|k|
• a large |k| solution—‘short’ waves

The waves’ group velocity can be obtained from

dD

dk
= −2ωm

dωm
dk

= 2ωm
dω

dk
= 2ωmvg = sk2πGσ0 − 2v2

sk (4.135)

so vg =
skπGσ0 − v2

sk

ωm
' εdD/dk

2κ
(4.136)

where the RHS is approximately true for waves near the LR where ωm ' εκ.

Note that the direction of wave propagations is set by the sign of vg:

sgn(vg) = εsgn(dD/dk).

Inspection of the DR shows that long waves have sgn(dD/dk) = +1,

so long waves have sgn(vg) = ε,

and that short waves have sgn(dD/dk) = −1 and thus sgn(vg) = −ε.

We will make use of this later...
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gravity–dominated spiral waves

Set vs = 0 to consider spiral waves in a gravity dominated disk.

Lets consider spiral waves in the vicinity of a LR in a nearly keplerian disk.

Our results would thus apply to waves in Saturn’s rings.

According to Eqn’ (3.181),

D(x) ' 3ε(m− ε)Ω2x = 2πGσ0|k| > 0 (4.137)

where x = ∆r/r = fractional distance from resonance.

Evidently, gravity–dominated spiral waves only propagate where

D and εx > 0.

Also note that sgn(vg) = ε, which indicates a long spiral wave.

The sketch shows that a LR in a gravity–dominated launches long spiral

density waves that propagate towards the CR radius

(ie, towards the perturbing satellite, if we are considering Saturn’s rings).
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The group velocity for a gravity–dominated wave that is near a LR

(where ωm ' εκ) is

vg ' skε
πGσ0

κ
(4.138)

so the direction of propagation is sgn(vg) = skε = ε.

Thus sk =sgn(k) = +1 ⇒ a LR in a gravity–dominate disk launches

long, trailing spiral density waves (k > 0) that propagate towards CR.

This DR indicates a long spiral wave that is launched at the LR

(where D = 0), and that the wave propagates in the D > 0 zone in the disk.

But eventually, the wave encounters a site where dD/dk turns over.

This site is known as the Q–barrier.

Since vg ∝ dD/dk, this site is a turning point, which causes the wave to

reflect as a short wave, which now propagates towards the launching LR.

The Q–barrier’s location in the disk is determined by vs.

Increasing vs does what to the Q–barrier—move it close to the LR?

or closer to CR?
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Recall that for a gas disk, vs = sound speed, which is about equal random

velocity of a typical gas molecule.

Similarly, in a particle disk (Saturn’s rings, a stellar disk),

vs = particles’ typical random velocity.

Evidently, there is a forbidden zone that is concentric with the CR; waves

do not enter the forbidden zone, but reflect at its edges, at the Q–barrier.

The DR shows that the reflected waves are short leading (k¡0) waves that

head back to the launching LR.

In Saturn’s rings, collisional viscosity damps out the long density waves long

before they reach their Q–barrier.
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pressure–dominated spiral waves

The DR for pressure–dominated spiral waves is obtained by setting σ0 = 0,

so D = −v2
sk

2 (4.139)

and sgn(D) = εsgn(x) = −1 (4.140)

⇒ pressure waves propagate where εx < 0, ie, opposite to gravity waves:

The group velocity for spiral waves in a pressure–dominated disk is

vg ' −εv
2
sk

κ
(4.141)

near the LR (ωm ' εκ).

Although our linearized theory says that these waves can travel off to infinity,

nonlinear shocks probably dissipate these waves in a circumstellar gas disk.
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Assignment #6

due Thursday April 6

at the start of class

3. Show that the Q–barrier lies a fractional distance

xQ ' 1

3mQ2
(4.142)

from a m� 1 Lindblad resonance in a nearly keplerian disk.

This explains why a high–Q disk does not sustain gravity–dominated spiral

waves—they have no place to go. Instead, such waves escape the resonance

by propagating in the opposite direction, as short wavelength pressure waves.
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Figure 4.1: The Encke gap as seen by Cassini. Saturn is far to the left. The pairs of bands on either
side of the gap are spiral density waves launched by Pandora and Prometheus, small satellites to the
right, outside the main rings. Note that these gravity–dominated density waves do indeed propagate
towards CR, and that their wavelengths shrink with distance from the LR (a feature you will derive
in problem 4). The constant-wavelength features on the right are Pan’s wakes, due to Pan’s passage
through this region about 4 months ago.
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Figure 4.2: A hydrodynamic simulation of a Jupiter–mass planet orbiting within a 0.02M� circumstellar
gas disk, by Lubow et al (1999). Note that these pressure–dominated waves propagate away from CR.
Although we call these ‘short’ waves, their wavelengths are much longer than the ‘long’ gravity waves
seen in Saturn’s rings. Note that the gravitational torque from the planet is enough to shepherd open
a gap about its orbits, despite the viscosity in the disk, which wants to close that gap. Nonetheless,
some disk matter manages to stream into the gap (indicated by the horseshoe orbits), which also feed
a circumplanetary disk, where satellites might presumably form.
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Assignment #6

due Thursday April 6

at the start of class

4. The following problems solve for the amplitude and wavelength of spiral

waves launched by a perturber in a gravity–dominated, nearly keplerian disk.

a.) Use the CE and PE to show that the fluid’s forced radial velocity obeys

vr '
ωmΦd

2πGσ0
(4.143)

in the tight–winding limit (TWL).

b.) Then use the EE to show that

vr ' −iωm
D

(

∂

∂r
+

2mΩ

rωm

)

(Φp + Φd) (4.144)

c.) Combine these results to obtain a single PDE for the disk’s potential that

describes the wave:

∂Φd

∂r
− iD

2πGσ0
Φd ' −Ψm (4.145)

where Ψm is the usual forcing function.

d.) Show that the above EOM can be written as

∂Φd

∂x
− ix

γ
Φd ' −amΨm (4.146)

where Φd(x) is now regarded as a function of the fractional distance from reso-

nance x, am is the radius of themth LR, and the constant γ = 2εµd/3(m−ε),
where µd = πσ0r

2/m1 is the normalized disk mass of Eqn’ (2.143).
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e.) Solve the above eqn’ using the method of integrating functions. Then

show that your solution can be recast in terms of a new radial variable

ξ ≡ εx/
√

2|γ|, so that

Φd(ξ) = −ε
√

2πγamψmHε(ξ)

where Hε(ξ) ≡
1√
π
eiεξ

2
∫ ξ

−∞
e−iετ

2
dτ.

(4.147)

This is a convenient form, because the function |Hε(ξ)| → 1 far downstream

of the resonance, while |Hε(ξ)| ' 0 far away on the ‘non–wave’ side of

the resonance. You are encouraged to convince yourself of that by using

MAPLE (or similar) to plot |Hε(ξ)|. Ask me how.

5. Show that the amplitude of a spiral density wave launched at an m � 1

LR in a gravity–dominated, nearly keplerian disk is
∣

∣

∣

∣

σ1

σ0

∣

∣

∣

∣

' |x|fµs

√

3m3

πµ3
d

(4.148)

where µs is the perturber’s mass in units of the primary’s, and |σ1/σ0| is the

fractional change in the disk’s surface density due to the wave. Note that

the wave amplitude is expected to grow as the wave propagates away from

resonance. Is that happening to the waves seen in Fig. 4.1? Why or why not?

6. The first wavelength λ1 is the radial separation between the first two

adjacent arms in the spiral wave pattern. Use Eqn’s (4.147) to show that the

the first wavelength in a gravity–dominated, nearly keplerian disk is

λ1 =

√

8πµd
3(m− ε)

am. (4.149)

What is λ1 (in km) for the spiral density waves seen in Fig. 4.1, assuming

that the waves were launched by Pandora or Prometheus, and that Saturn’s

A ring has σ ∼ 100 gm/cm2.

7. resonance trapping problem...
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Viscous Disk Evolution

Astrophysical disks experience differential rotation because their circular

velocity v(r) = rΩ varies with radius r in the disk,

causing fluid parcels in the disk to slide past each other.

There are usually frictional forces in these disks, and such forces usually

attempt to ‘brake’ this differential motion. This friction saps the system of

its orbital energy, causing the orbits of the fluid parcels to decay.

In a circumstellar gas disk, that friction is thought to be due to turbulence

in the disk—perhaps driven by vertical convection in the disk,

or maybe an MHD instability.

In a planetary ring, friction is a consequence of collisions among ring particles.

Note that collisions are generally too rare to be of consequence in a stellar

disk. But stars can gravitationally scatter each other, and its effects can be

loosely treated as a viscosity in a fluid.

Collisions and scattering tend to covert ordered orbital energy into disor-

dered energy—they ‘heat up’ the disk, and that heat can be radiated away.

Thus friction in the disk reduces the disk’s energy, which implies an inwards

flow of matter.

But keep in mind that a disk must also conserve angular momentum L.

Even though the net mass flux is radially inwards,

L conservation still requires some mass to flow outwards, too

⇒ friction causes a disk to spread.
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We usually describe these frictional forces in the disk by its

kinematic shear viscosity ν;

Note that although the net mass flux in the disk tends tends to be inwards,

the outer parts of the disk must spread outwards, too...

unless the disk hits a barrier, such as a resonance with a perturber...

the EOM for a viscous disk

The usual approach is to add to the RHS of the EE

the acceleration on a fluid element that is due to the disk’s kinematic shear

viscosity ν:

ν∇2v +
1

3
ν∇(∇ · v); (4.150)

where v(r,t) is the usual Eulerian fluid velocity.

The resulting EOM is known as the Navier–Stokes eqn’.

Note that there are other sources of viscosity (like the fluid’s bulk viscosity)

which can contribute additional terms; we won’t be considering those here.

The derivation of the term in Eqn’ (4.150) can be found in any text on fluid

dynamics. But it is a bit involved, and we won’t pursue it here.
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Instead, we will use methods described in a very nice review paper by

Pringle (1981), who derives another useful eqn’:

a continuity eqn’ for the disk’s angular momentum.

That eqn’ + the usual mass CE can then be used to solve for the disk’s

surface density σ(r, t) and velocity v(r, t).

ang’ mom’ continuity

Lets suppose that our disk has a small vertical half–width h,

so the disk’s volume density is ρ = σ/2h.

The angular momentum in some small volume ∆V is ∆L = (ρ∆V )r× v,

so ~̀V ≡ ∆L/∆V = ρr × v is the volume density of ang’ mom’ in the disk.

For a flat disk that has no vertical motions, v = vrr̂ + rΩθ̂,

and ~̀V = ρr2Ωẑ ≡ `V ẑ.

The ang’ mom’ flux density is j = `V v,

and the ang’ mom’ flux through surface A = An̂ is j · A = `VAv · n̂,

where n̂ is the unit vector normal to area A.

Now lets consider the angular momentum content of some volume V

that is bounded by surface S:
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Since L =
∫

V `V dV = total ang’ mom’ in volume V , its rate of change is

dL

dt
=

∫

V

∂`V
∂t

dV = −F + T (4.151)

where F =

∫

S

j · da =

∫

V

∇ · (`Vv)dV (4.152)

is the rate that ang’ mom’ flows out of V through surface S, making use of

the divergence theorem, Eqn’ (4.7).

The T term is the rate at which ang’ mom’ is deposited in V due to external

perturbations (ie, the torque on V ):

T =

∫

V

t̃dV (4.153)

where t̃ is the torque volume density due to external perturbations.

Putting all this together yields
∫

V

(

∂`V
∂t

+ ∇ · (`V v) − t̃

)

= 0 (4.154)

⇒ ∂`V
∂t

+ ∇ · (`Vv) = t̃ (4.155)

since the volume V is arbitrary.

This is the 3D continuity eqn’ for the disk’s angular momentum.

For many astrophysical disks, σ, `V ,and the external torque density t̃ are

axially symmetric (independent of θ), or nearly so.

Since our disk is also thin, lets simplify by making the above eqn’ 2D:

set `V = `/2h where ` is the disk’s ang’ mom’ surface density,

so when we vertically integrate the above eqn’ through the disk,

∂`

∂t
+ ∇ · (`v) = 2ht̃ (4.156)
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Then let ∂T/∂r = torque radial density (eg, eqn’ 2.141) such that

∂T

∂r
∆r = torque on annulus of radial width ∆r (4.157)

= t̃2πr · 2h∆r → 2ht̃ =
1

2πr

∂T

∂r
(4.158)

and
∂`

∂t
+ ∇ · (`v) =

1

2πr

∂T

∂r
(4.159)

is the ang’ mom’ CE for our axially symmetric 2D disk.

The fluid velocity in an axially symmetric disk is v = vr(r, t)r̂ + rΩ(r, t)θ̂,

so the above becomes

∂`

∂t
+

1

r

∂

∂r
(r`vr) =

1

2πr

∂T

∂r
, (4.160)

where ` = σr2Ω.

The other EOM is the mass CE, Eqn’ (4.10),

which is similar but with the RHS=0:

∂σ

∂t
+

1

r

∂

∂r
(rσvr) = 0 (4.161)
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the viscous torque density

Lets derive ∂T
∂r

∣

∣

ν
, which is the radial torque density due to the disk’s viscosity.

Begin by dividing up the disk into nested annuli that have a small radial

width ∆r and vertical half–thickness 2h:

Let F/A = frictional force per area that one annulus exerts on another one,

where A = 2πr2h = area of the border between between annuli.

If ∆Ω = difference in angular velocities of adjacent annuli, then we might

expect F ∝ r(d∆Ω/∆r), ie

F

A
= ηr

∆Ω

∆r
→ ηr

∂Ω

∂r
(4.162)

where the proportionality constant η is the shear viscosity.

This should seem reasonable,

since we expect F → 0 in a rigidly–rotating disk (Ω = constant).

Since viscosity η is usually proportional to amount of matter in the disk, ie,

its density ρ, we usually set η = ρν, where ν is the kinematic shear viscosity.

The total torque on one annulus due to its neighbor is thus

Tν = rF = Aηr2∂Ω

∂r
(4.163)
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The viscous radial torque density is then

∂T

∂r

∣

∣

∣

∣

ν

=
∂Tν
∂r

=
∂

∂r

(

4πr3hρν
∂Ω

∂r

)

(4.164)

= 2π
∂

∂r

(

r3σν
∂Ω

∂r

)

(4.165)

since ρ = σ/2h.

Note that if your disk is nearly keplerian, then ∂Ω/∂r = −3Ω/2r and

∂T

∂r

∣

∣

∣

∣

ν

= −3π
∂(`ν)

∂r
(4.166)

where ` = σr2Ω is the ang’ mom’ surface density.
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a diffusion eqn for the disk

Lets combine our two CE to obtain a single diffusion eqn for a viscous disk.

Eqn’ (4.160)/r2Ω is

∂σ

∂t
+

1

r3Ω

∂

∂r
(σr3Ωvr) =

∂σ

∂t
+

1

r

∂

∂r
(rσvr) +

σvr
r2Ω

∂

∂r
(r2Ω) (4.167)

=
1

2πr3Ω

∂T

∂r

∣

∣

∣

∣

ν

= − 3

2r3Ω

∂

∂r
(νσr2Ω), (4.168)

but the first two right terms are zero by the mass CE,

so we can solve for the disk’s radial velocity vr that is due to viscosity.

Noting that a keplerian disk has r2Ω ∝ r1/2 and ∂(r2Ω)/∂r = rΩ/2, then

vr = − 3

σr2Ω

∂

∂r
(νσr2Ω) (4.169)

So if you know the disk’s surface density σ and viscosity ν, then you can

calculate the fluid radial velocity vr, as well as the mass transport rate

dm/dt = 2πσrvr that flows through an annulus in the disk of radius r.

Now use this result to eliminate vr from the mass CE, Eqn’ (4.161):

∂σ

∂t
=

3

r

∂

∂r

[

1

rΩ

∂

∂r
(νσr2Ω)

]

(4.170)

we get a single diffusion eq’ for the disk surface density σ(r, t).
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simple example

Lets consider a constant viscosity disk of infinite radial extent, that is also

in equilibrium, ie, ∂σ/∂t = 0.

How does σ vary with r in a steady–state disk?

What is the disk’s radial velocity vr throughout the disk?

And what is the mass–loss rate dm/dt through annulus r?

Eqn’ (4.170) for a steady–state, nearly keplerian disk says that

∂

∂r
(νσr2Ω) ∝ rΩ ∝ r−1/2 (4.171)

so νσr2Ω ∝ r1/2 (4.172)

⇒ σ = constant (4.173)

According to Eqn’ (4.169), the fluid radial velocity is

vr = − 3ν

r2Ω

∂

∂r
(r2Ω) = −3ν

2r
(4.174)

And the mass–loss rate is
dm

dt
= 2πrσvr = −3πσν, (4.175)

which is constant throughout the disk.

Note that this solution breaks down at small r.

For instance, if there is a star at the center, then pressure effects at the

boundary layer, which is where the star’s surface contacts the inner disk,

tends to impede the flow.
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the α viscosity law

The viscosity ν in most astrophysical disks usually has a form that is known

as the Shakura & Sunyaev viscosity law:

ν = αvsh (4.176)

where vs is the disk’s sound speed, h is the disk scale–height, and α is a

dimensionless coefficient. This is sometimes known as the α viscosity law.

Since vs = hΩ (see Assignment #6, problem 1d), ν = αh2Ω.

All of the physics of viscosity, which is often poorly known,

is buried in the α parameter.

For instance, a circumstellar disk that is viscous due to turbulent vertical

convection has an α–type viscosity, as does a slightly ionized disk that

suffers the Balbous–Hawley MHD instability.

Note that observations of circumstellar disk usually show that the disk’s are

slightly flared, ie, their angular scale–height h/r increases slowly with r,

which would suggests that ν = αh2Ω might vary slowly with r.

However, it is often good enough to treat ν(r) as a constant.
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gap formation in a constant–viscosity disk

Lets consider a constant–viscosity disk which also has a secondary mass µs
orbiting within. The secondary could be a companion star orbiting in a

circumbinary disk, a protoplanet orbiting in a circumstellar disk, or a small

satellite orbiting in a planetary ring.

Lets tackle several questions:

How massive must µs be in order to shepherd open a gap in the disk?

How wide is the gap?

How fast will µs migrate due to type II migration?

The relevant EOM is our CE for the disk’s ` = σr2Ω, Eqn’ (4.160)

∂`

∂t
+

1

r

∂

∂r
(r`vr) =

1

2πr

(

∂T

∂r

∣

∣

∣

∣

ν

+
∂T

∂r

∣

∣

∣

∣

s

)

(4.177)

where
∂T

∂r

∣

∣

∣

∣

ν

= −3π
∂

∂r
(σr2Ων) = viscous torque density, Eqn’ (4.166) (4.178)

and
∂T

∂r

∣

∣

∣

∣

s

= sgn(x)
32f 2

81π

(a

x

)4

µdµ
2
sm1asΩ

2
s (4.179)

is the radial torque density that µs exerts on the disk matter that lies a

radial distance x = r − as away, µd = πσ0r
2/m1; see Eqn’ (2.142).

Although that torque density is formally valid for, say, a satellite that

perturbs a particle ring, it is also approximately true for a star/planet that

perturbs a circumstellar gas disk, too.

Suppose the system is in quasi–static equilibrium,

which means that there is no motion of the disk relative to the s.

What does that tell us about the torques in this system?
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Quasi–static equilibrium means that ∂`/∂t ' 0 and vr ' 0,

which implies a torque balance:

3πν
∂

∂r
(σr2Ω) = sgn(x)

32f 2

81π

(a

x

)4

µdµ
2
sm1asΩ

2
s (4.180)

Lets suppose that the gap is a narrow, sharp–edged feature, such that

3πν
∂

∂r
(σr2Ω) ' 3πνr2Ω

∂σ

∂x
(4.181)

so
∂σ

∂x
= sgn(x)

32f 2

243π

(a

x

)4 µ2
sσ0asΩs

ν
(4.182)

and σ(x) =

∫

∂σ

∂x
dx = σ0

[

1 − 32f 2

729π

∣

∣

∣

a

x

∣

∣

∣

3
(

a2
sΩs

ν

)

µ2
s

]

(4.183)

≡ σ0

(

1 −
∣

∣

∣

xedge
x

∣

∣

∣

3
)

(4.184)

where xedge =

[

32f 2

729π

(

a2
sΩs

ν

)

µ2
s

]1/3

as (4.185)

is the secondary–gap edge separation.

For, say, a Jupiter–mass planet µs = 10−3 in a disk having h ∼ 0.1r

(typical of circumstellar disks) and α ∼ 0.01 (typical of the MHD instabil-

ity), ν/a2
sΩs ∼ α(h/r)2 ∼ 10−4.

In this case, the distance to the gap edge is xedge ∼ 0.1as,

so the gap half–width is ∼ 10% of the planet’s orbit.

Compare this result to Fig. 4.2.
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How massive should the secondary be in order to open a ‘clean’ gap?

Hint: compare xedge to the disk particles’ random epicyclic motions.

⇒ µs & 3.4

√

α

(

h

r

)5

(4.186)

which is about 35 M⊕ for the above example.

If µs is less than this limit, then the gap won’t be ‘clean’.

Rather, it will resemble a surface density ‘depression’.

Now lets consider the long–term evolution of this system.

Is our disk really in static equilibrium? ie, is ∂σ/∂t really 0?

And is the fluid radial velocity vr?

This is why I use the term quasi–static equilibrium,

which is meant to imply that there is no fluid motions relative to the

secondary.

What is the disk’s radial velocity vr?

And the secondary’s?

This is type II planet migration. According to Eqn’ (4.169), the disk flows

inwards with velocity

vr = −3ν

2r
= −3α

2

(

h

r

)2

rΩ. (4.187)

What happens to the secondary’s orbit?

When the disk is in quasi–static equilibrium, the secondary’s orbit decays,

too, since there is no fluid motion relative to µs.
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When µs opens a gap in the disk, the gap acts like a mass barrier.

But the disk is viscous,

so disk + µs spiral into the primary on the disk’s viscous timescale

τν =

∣

∣

∣

∣

r

vr

∣

∣

∣

∣

=
Porb
3πα

(r

h

)2

, (4.188)

also known as the type–II migration timescale.

For the example above, τν ' 103 orbits,

which at r = 5 AU is only ∼ 104 years!

Viscous disks are quite perilous to planet–formation!

Actually, observations of disks around young stars suggest that these disks

tend to persist for a few million years, which would imply an α ∼ 10−4.

time–dependent disk evolution

Thus far we have solved for the viscous evolution of quasi–static systems.

This time, lets solve a truly time–dependent problem:

the viscous evolution σ(r, t) and vr(r, t) for an initially narrow ring.

Lets assume the ring has mass m and is initially narrow, with radius r0:

σ(r, t = 0) =
m

2πr0
δ(r − r0) (4.189)

(check: does ring mass m =
∫

σda?)

The ring’s diffusion EOM is Eqn’ (4.170)

∂σ

∂t
=

3ν

r

∂

∂r

[

1

rΩ

∂

∂r
(σr2Ω)

]

(4.190)
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For a nearly keplerian disk, rΩ = c/r1/2 where c = constant, so

∂σ

∂t
=

3ν

r

∂

∂r

[

r1/2 ∂

∂r
(σr1/2)

]

(4.191)

Diffusion eqn’s like this are usually solved by separation of variables, which

means that you assume the solution is the product σ(r, t) = S(r)T (t).

Insert this into the EOM, and divide by σ:

1

T

∂T

∂t
=

3ν

Sr

∂

∂r

[

r1/2 ∂

∂r
(Sr1/2)

]

(4.192)

What is the LHS a function of?

And the RHS?

What does this say about the LHS & the RHS?

The the system’s behavior in time must satisfy

⇒ ∂T

∂t
= −ωT (4.193)

so T (t) = e−ωt (4.194)

where ω is a constant, and this T (t) is just one possible solution.

But keep in mind that e−ω
′t is another solution, too...

Thus the radial EOM becomes

∂

∂r

[

r1/2 ∂

∂r
(Sr1/2)

]

= − ω

3ν
rS (4.195)

so S ′′r +
3

2
S′ + k2rS = 0 (4.196)

where S ′ = ∂S/∂r, etc., and k2 ≡ ω/3ν is a constant.
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You could massage the eqn further until it starts to resemble Bessel’s eqn...

or you can ask MAPLE to solve this, using dsolve():

S(r) =
C

(kr)1/4
J1/4(kr) +

D

(kr)1/4
Y1/4(kr) (4.197)

where the J and Y functions are Bessel fn’s of the 1st and 2nd kind,

and C & D are constants.

We expect the disk surface density σ to be finite everywhere at times t > 0,

which implies that D = 0, since Y1/4/r
1/4 diverges as r → 0.

Thus a particular solution to the diffusion EOM is

S(r)T (t) = e−3νk2t C(k)

(kr)1/4
J1/4(kr) (4.198)

keep in mind that this is merely a single ‘mode’ having a wavenumber k and

amplitude C(k) that satisfies the EOM.

Other modes having other k’s also satisfy the EOM, too.

The general solution formed from the superposition of all modes that sat-

isfy initial conditions. This is obtained by replacing C(k) → c(k)dk and

summing over all k:

σ(r, t) =

∫ ∞

0

dke−3νk2tc(k)(kr)−1/4J1/4(kr) (4.199)

The last step is to determine the function c(k) that recover’s the disk initial

state when t = 0 and σ(r, 0) = mδ(r − r0)/2πr0.

That last step is rather mathematical...it requires some elaborate orthogo-

nality relations for Bessel fn’s...
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We will skip those details [which are given in a classic paper by Lynden–Bell

& Pringle (1974)], and merely quote the final result:

σ(x, τ ) =

(

m

2πr2
0

)

1

x1/4τ
e−(x2+1)/2τI1/4

(x

τ

)

(4.200)

where I1/4 is a modified Bessel function of the dimensionless distance x =

r/r0 and dimensionless time τ = 6νt/r2
0.

67



The above Figure (from Pringle 1981)

illustrates the main features of any viscous disk:

• the disk spread’s radially, both inwards and outwards

• the net mass flux is inwards,

• nonetheless, some mass gets transported outwards, in a manner that

preserves the ring’s angular momentum.

The viscous timescale tν is obtained by setting τ = 6νt/r2
0 ≡ t/tν

⇒ tν = r2
0/6ν.

This is the time required for the ring to get smeared out into a disk,

losing all memory of its initial state.

For an α–disk, ν = αh2Ω, and

tν =
r2
0

6ν
=

Porb
12πα

(r

h

)2

(4.201)

which is comparable to the type–II migration timescale, Eqn’ (4.188).
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