
Lecture Notes for ASTR 5622
Astrophysical Dynamics

Prepared by

Dr. Joseph M. Hahn

Saint Mary’s University

Department of Astronomy & Physics

January 3, 2006

Loosely speaking, dynamics = the study of the motion of matter due to

internal and/or external forces, like gravity, pressure, etc.

Begin by using Newton’s Laws of motion to study the two–body problem.

Newton’s Laws

Law I: A body remains at rest or in uniform motion unless acted upon by a

force, ie., v = constant provided F = 0.

Law II: A body acted upon by a force moves such that its time rate of

change of momentum equals the force, ie., ṗ = F where p = mṙ, where m

is the particle’s mass, r its position vector, ṙ = dr/dt its velocity.

In short, F = mr̈.

Law III: If two bodies exert forces on each other, these forces are equal in

magnitude and opposite in direction, ie, F12 = −F21,

where F12 = the force on particle 1 exerted by particle 2.

Newton’s laws are valid in an inertial reference frame.

An inertial reference frame=reference frame where Newton’s laws are

obeyed... yes, this is a circular argument...

Note that Law I implies that an inertial reference frame is one that is

stationary or moves with velocity V = constant, possibly zero.
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The Two–Body Problem

from Chapter 2 of Murray & Dermott’s (M&D) Solar System Dynamics:

Lets solve the 2–body problem:

Begin with 2 gravitating masses m1 and m2 having position vectors r1, r2,

and let r = r2 − r1 = the bodies’ relative coordinate:

These could be two stars that orbit one another,

or a planet in orbit about one star,

or two unbound bodies that encounter each other:

Recall Newton’s law of gravity:

|F1| =
Gm1m2

r2
(1.1)

which is an attractive force, so we can write

F1 = +
Gm1m2

r3
r = m1r̈1 = grav’ force on m1 due to m2 (1.2)

F2 = −Gm1m2

r3
r = m2r̈2 = force on m2 due to m1 (1.3)
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thus r̈ = r̈2 − r̈1 = −G(m1 + m2)

r3
r = relative acceleration (1.4)

or r̈ = − µ

r3
r (1.5)

where µ = G(m1 + m2) (1.6)

(1.7)

This is the equation for the motion of m2 (the secondary body)

relative to m1 (the primary body).

Note that writing our equation of motion (EOM) in terms of the

relative coordinate r effectively places our origin on m1.

Does this choice of a coordinate system mean

that our reference frame is inertial?

The gravitational constant G is

G = 6.67 × 10−11 m3/kg/sec2 = 6.67 × 10−8 cm3/gm/sec2.

Although the text uses MKS units, most astronomers use cgs units...
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Integrals of the Motion

The following will derive several integrals (ie, constants) of the motion

that will be quite handy:

note that r × Eqn. (1.5) = r × r̈ = 0 =
d

dt
(r× ṙ) (1.8)

so r × ṙ = h = constant (1.9)

(1.10)

This is the system’s angular momentum integral h = r× ṙ

which is a constant vector that is perpendicular to both r and ṙ

⇒ m1 and m2 are restricted to moving in a plane perpendicular to h.

h has units of ang’ mom’ per unit mass,

and is sometimes call the specific angular momentum

Keep in mind that h is not the system’s total angular momentum per unit

mass, due to the fact that we used a coordinate system that is not inertial.

The total ang’ mom’ is calculated in Section 2.7 of the text using center–of–

mass (COM) aka barycentric coordinates.
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Since the motion is restricted to a plane,

we will proceed using polar coordinates r(r, θ):

Your elementary Mechanics class showed that

r = rr̂ (1.11)

ṙ = ṙr̂ + rθ̇θ̂ (1.12)

r̈ = (r̈ − rθ̇2)r̂ +

[

1

r

d

dt

(

r2θ̇
)

]

θ̂ (1.13)

where r̂, θ̂, and ẑ are the usual unit vectors in cylindrical coordinates.

Thus h = r × ṙ = r2θ̇r̂ × θ̂ = r2θ̇ẑ (1.14)

and h = |h| = r2θ̇ (1.15)

Kepler’s 2nd

The above leads to Kepler’s 2nd law of planetary motion:

a planet’s position vector r sweeps out equal areas in equal times.

In a short time interval ∆t,

the radius vector r → r + ∆r and sweeps out a small area ∆A, where

∆A =
1

2
base · height ' 1

2
r2∆θ (1.16)

Thus
dA

dt
=

∆A

∆t

∣

∣

∣

∣

∆t→0

=
1

2
r2θ̇ =

1

2
h = a constant (1.17)

Thus r has a constant areal velocity, ie,

r sweeps out equal areas in equal times.
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Solve for the orbit

Recall that r̈ = − µ

r3
r (see Eqn. 1.5) (1.18)

whose radial part is r̈ − rθ̇2 = − µ

r2
(Eqn. 1.13) (1.19)

An easy solution is obtained by first replacing r with the variable u = 1/r,

and assume that u = u(θ) while θ = θ(t):

since r = u−1 (1.20)

ṙ = −u−2du

dθ

dθ

dt
= −r2du

dθ

h

r2
since θ̇ = h/r2 (1.21)

so ṙ = −h
du

dθ
(1.22)

and r̈ = −h
d2u

dθ2
θ̇ = −h2u2d

2u

dθ2
(1.23)

So the equation of motion (1.19) becomes

−h2u2d
2u

dθ2
− u−1h2u4 = −µu2 (1.24)

or
d2u

dθ2
= −u +

µ

h2
(1.25)

This familiar EOM has the same form as that of a mass

dangling from a spring and subject to gravity:

mẍ = −kx + mg where x = displacement, k = spring const’ (1.26)

or ẍ = −ω2x + g where ω =
√

k/m (1.27)

with sol’n x(t) = A cos(ωt − δ) + x0 (1.28)

where x0 = mg/k, and δ = phase constant.

Thus Eqn. (1.25) has solution

u(θ) = A cos(θ − ω̃) + B (1.29)

where A, B, ω̃ are constants determined by initial conditions.
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Since

d2u

dθ2
= −A cos(θ − ω̃) = −A cos(θ − ω̃) − B +

µ

h2
(1.30)

⇒ B =
µ

h2
(1.31)

Also, set A = eB where e is another constant. Then

u(θ) = B[e cos(θ − ω̃) + 1] =
µ

h2
[1 + e cos(θ − ω̃)] (1.32)

so r(θ) = u−1 =
h2/µ

1 + e cos(θ − ω̃)
(1.33)

≡ p

1 + e cos(θ − ω̃)
(1.34)

This is the equation for a conic section=intersection of a plane & cone,

where the constant p = h2/µ is known as the semilatus rectum.
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The type of conic section depends upon the orbit’s eccentricity e:

circle e = 0 p = a E < 0

ellipse 0 < e < 0 p = a(1 − e2) E < 0

parabola e = 1 p = 2q E = 0

hyperbola e > 0 p = a(1 − e2) E > 0

(1.35)

where the constant a is the orbit’s semimajor axis,

while b = a
√

1 − e2 = the semiminor axis.

The constants a, e, ω̃ are known as orbit elements.

Later we will show that orbits with eccentricities e < 1 are bound,

ie, they have energies E < 0,

while a parabolic orbit with e = 1 is marginally bound with E = 0,

and a hyperbolic orbit with e > 1 is unbound with E > 0.

The bound, elliptic orbit is most relevant to planetary problems:

r(f) =
a(1 − e2)

1 + e cos f
(1.36)

where f = θ − ω̃ = m2’s true anomaly (1.37)

θ = its longitude (1.38)

ω̃ = its longitude of periapse (1.39)

m2 is closest to m1 at periapse, when f = 0 and r(0) ≡ q = a(1 − e),

and furthest at apoapse when f = π and r(π) ≡ Q = a(1 + e).
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Note that the primary m1 is not at the center of the ellipse;

rather it lies at a focus.

We have also recovered Kepler’s 1st Law of planetary motion:

a planet moves along an ellipse with the Sun at one focus.

Since h =
√

µp, this also means that the system’s angular momentum

(actually, its angular momentum integral) depends on e, too.

For an elliptical orbit, h =
√

µa(1 − e2).

Kepler’s 3rd Law: T 2 ∝ a3

Recall that

dA

dt
=

1

2
h = r’s areal velocity, Eqn. (1.17) (1.40)

If T = the planet’s orbital period, then

total orbit area =

∫ T

0

dA

dt
dt = A =

∫ T

0

1

2
hdt =

1

2
hT (1.41)

⇒ T =
2A

h
(1.42)

where A = πab = area of ellipse (1.43)

= πa2
√

1 − e2 (1.44)

and T =
2πa2

√
1 − e2

√

µa(1 − e2)
(1.45)

= 2π

√

a3

µ
= 2π

√

a3

G(m1 + m2)
(1.46)

which confirm’s Kepler’s 3rd.

9



Energy Integral E

Recall that r̈ = − µ

r3
r (Eqn. 1.5) (1.47)

so ṙ · r̈ +
µ

r3
ṙ · r = 0 (1.48)

since r = rr̂ and ṙ = ṙr̂ + rθ̇θ̂ (1.49)

ṙ · r = ṙr (1.50)

and ṙ · r̈ +
µṙ

r2
= 0 (1.51)

now note that v2 = ṙ · ṙ (1.52)

so
dv2

dt
= 2ṙ · r̈ (1.53)

or ṙ · r̈ =
1

2

dv2

dt
(1.54)

Next note that
d

dt

(

1

r

)

= − ṙ

r2
(1.55)

so ṙ · r̈ +
µṙ

r2
=

d

dt

(

1

2
v2 − µ

r

)

= 0 (1.56)

ie E =
1

2
v2 − µ

r
= constant energy integral (1.57)

= kinetic + potential E per mass (1.58)

Again, this is not the system’s total energy since our coordinate system is

not inertial (ie, the relative velocity v would need to be replaced with COM

velocities ṙ1 and ṙ2).
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Since E is constant, we can evaluate it at any site in m2’s orbit about m1.

Lets evaluate E when m2 is at periapse, when it is closest to m1.

Then r = q = a(1 − e), ṙ = 0 so v = rθ̇ (why?)

where θ̇ = h/r2, so v = h/r = h/a(1 − e) where h =
√

µa(1 − e2) and

E =
µa(1 − e2)

2a2(1 − e)2
− µ

a(1 − e)
=

µ

2a(1 − e)

[

(1 + e)(1 − e)

1 − e
− 2

]

(1.59)

=
µ

2a(1 − e)
(−1 + e) (1.60)

= − µ

2a
= −G(m1 + m2)

2a
(1.61)

which of course is a constant since our 2-body system is conservative.

The other important integral is the angular momentum integral h

h =
√

µa(1 − e2) =
√

G(m1 + m2)a(1 − e2) (1.62)

Section 2.7 of the text also computes the system’s total energy

and angular momentum in barycentric (ie, COM) coordinates:

Let µ? =
m1m2

m1 + m2

= system’s reduced mass (1.63)

Sec’ 2.7 shows that E? = µ?E = −Gm1m2

2a
= total energy (1.64)

and L? = µ?h =
m1m2

m1 + m2

h = total ang’ mom’ (1.65)

(1.66)

please don’t confuse µ? and µ...
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The Orbit in Space

In general, m2’s orbit plane will differ from

your preferred x − y “reference plane”.

If you were studying the motion of, say, a comet, then your reference plane

would likely be the ecliptic (the plane of Earth’s orbit). If studying the

motion of a star, then your x− y plane might instead be the Galactic plane.

Three additional angles are needed to describe the orientation of m2’s orbit:

inclination i, the tilt of orbit plane relative to the reference plane

longitude of ascending node Ω

argument of periapse ω

The set a, e, i, ω, Ω the shape and orientation of m2’s orbit, and f gives its

angular location in that orbit.
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The Orbit in Time

We still need to specify where m2 is as a function of time, ie, we need to

solve for m2’s position r and true anomaly f as functions of time t.

This is done in Section 2.4 of M&D; the derivation is straightforward calculus

and geometry, but laborious, and is not repeated here.

Section 2.4 shows that r and f can be parameterized as functions of the

eccentric anomaly Ec:

r(Ec) = a(1 − e cos Ec) (1.67)

M ≡ n(t − τ ) = Ec − e sin Ec (known as Kepler’s equation)(1.68)

where M = mean anomaly,

n =
√

µ/a3 =
√

G(m1 + m2)/a3 = the mean motion

(ie, m2’s mean angular velocity about m1),

and τ = time of periapse passage.

It is recommended that you work through Section 2.4

and confirm the above equations.

Suppose you wish to know what r and f are for m2 at some time t:

1. calculate n and M (Note: you can set your clock so that τ = 0).

2. solve Kepler’s equation numerically for Ec, then get r(Ec).

3. solve the ellipse equation r = a(1 − e2)/(1 + e cos f) for f ,

taking care to get the sign of f correct (or use Eqn’ 2.46 of M&D) .

This might seem laborious,

but the above steps are easily automated on a computer.
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Elliptic expansions of the orbit

Kepler’s eqn. (KE) relates m2’s position↔time via

M = n(t − τ ) = E − e sin E (1.69)

r = a(1 − e cos E). (1.70)

However the relationship between t and r(f) is difficult to use in analytic

studies, principally because KE is a transcendental function of E.

But useful analytic formulas describing m2’s motion are possible when the

orbit is nearly circular, ie, in the limit that e � 1.

This approximation is often accurate enough when describing the motion

of most of the planets, satellites, and the orbits of dust grains, planetary

ring particles, as well as for binary stars whose orbits have been tidally

circularized.

The following approximation will be marginally true for

asteroids having e ∼ 0.1.

However it is not useful for cometary orbits, and stars in clusters or galaxies,

which often have substantially larger e’s.

Consider an orbit with e � 1, and derive expressions for the true anomaly

f and the radial coordinate r/a as power series in e.

The following derives those expressions to an accuracy of O(e).

In your homework, you will rederive these expressions to accuracy O(e2).
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The following trig identities will be useful:

cos(A + B) = cos A cos B − sin A sin B (1.71)

sin(A + B) = sin A cos B + cos A sin B (1.72)

sin2 A =
1

2
(1 − cos 2A) (1.73)

cos2 A =
1

2
(1 + cos 2A) (1.74)

Also useful is the binomial expansion:

(1 + x)n = 1 + nx +
1

2!
n(n − 1)x2 +

1

3!
n(n − 1)(n − 2)x3 + · · ·(1.75)

and the Taylor series expansions

sin x ' x − x3

3!
+

x5

5!
+ O(x7) (1.76)

cos x ' 1 − x2

2!
+

x4

4!
+ O(x6) (1.77)

Start by inserting

E = M + e sin E (1.78)

into
r

a
= 1 − e cos E = 1 − e cos(M + e sin E) (1.79)

thus
r(t)

a
= 1 − e cos M cos(e sin E) + e sin M sin(e sin E) (1.80)

' 1 − e cos(M) + O(e2) (1.81)

since M(t) = nt and e � 1.
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The series expansion for f(t) is obtained from

h = r2θ̇ = r2df

dt
= na2

√

1 − e2 (1.82)

so df =
a2

r2

√

1 − e2ndt (1.83)

=
√

1 − e2
[

1 − e cos M + O(e2)
]−2

dM (1.84)

Now use the binomial expansion:

√

1 − e2 ' 1 − 1

2
e2 (1.85)

and (1 − e cos M)−2 ' 1 + 2e cos M + O(e2) (1.86)

so df ' (1 + 2e cos M)dM (1.87)

and f(t) ' M + 2e sin M + O(e2) (1.88)

when integrated.

Higher–order expressions for r/a and f are also given in Section 2.5 of M&D.
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Assignment #1

due Thursday January 19

at the start of class

1. Repeat the above analysis to an accuracy of O(e2) to show that

r

a
' 1 − e cos(M) +

1

2
e2(1 − cos 2M) + O(e3) (1.89)

f ' M + 2e sin M +
5

4
e2 sin 2M + O(e3) (1.90)

Of course, Section 2.5 of M&D derive the above by invoking Bessel functions.

Your solution SHOULD NOT parrot M&D; use my method outlined above,

which is conceptually much easier...

2. Using these same methods, show that

cos Ec ' cos M +
1

2
e(cos 2M − 1) + O(e2) (1.91)

sin f ' sin M + e sin 2M + O(e2) (1.92)

(We will use the results of problems 1 & 2 later when we examine the effects

of a planet’s perturbations upon, say, an asteroid in a low–e orbit,

or the motion of one satellite as it is perturbed by another.)

3. Consider two small satellites in close orbits with semimajor axes a and

a + ∆a, where |∆a| � a. Show that their synodic period, which is the

time between successive encounters, is Tsyn ' 2Ta/3|∆a|, where T is the

orbit period of one of the satellites. We will use this result in our study of

planetary rings.

more on next page ⇒
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4. Consider two unbound stars m1 and m2 that encounter and gravitationally

scatter each other; their motion is hyperbolic. Long before the encounter at

time t = −∞, the star’s separation r is infinite, and star m2 (the scattered

star) has an initial speed v∞ relative to m1 (the scattering star) and impact

parameter b (see sketch).

a.) show that m2’s orbit has a semimajor axes a, specific angular momentum

h, and eccentricity e that obey

a = − µ

v2
∞

where µ = G(m1 + m2) (1.93)

h = bv∞ (1.94)

e2 = 1 +
b2v4

∞
µ2

(1.95)

b.) Let fmax = m2’s maximum true anomaly, which is achieved at times

t = ±∞. Also let θs = angle through which m2 is scattered. Show that

cos fmax = −1

e
(1.96)

θs = 2 cos−1

(

−1

e

)

− π. (1.97)

We will use these results later when we discuss dynamical friction in star

clusters.
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The epicyclic approximation

Assume m2 is in a nearly circular orbit, so

r(t) ' a − ae cos nt ≡ a + x(t) where x(t) = −ae cos nt (1.98)

f(t) ' nt + 2e sin nt ≡ nt +
y(t)

a
where y(t) = 2ae sin nt (1.99)

The text calls this the guiding center approximation,

but is also known as epicyclic motion.

The guiding center is the point G which travels about m1

on a circular orbit of radius a with a constant angular rate n.

Meanwhile, m2 is at the point x, y, which revolves around point G

in the opposite sense with a radial amplitude ae

(which is known as m2’s epicyclic amplitude),

and a tangential amplitude 2ae.

Note that these formulas are only appropriate for the nearly Keplerian prob-

lem, namely, for the motion of m2 as it orbits in a gravitational potential

that varies as r−1.

When we consider the motion of stars as they orbit in a galaxy’s non–

Keplerian potential, we will derive modified expressions for x and y.
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