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Chapter 9: Dynamics of systems of particles

To date we have focused on the motion of a single particle
(ex: the motion of a block on an inclined plane, the plane pendulum, etc.).

We also examined the 2-body central force problem by recasting it as
1-body problem.

Now we will consider N-body systems for the remainder of this course.

Our first task is to derive the relevant conservation theorems for systems of
N particles (as we did earlier for N=1 systems).

Note that these results will be true for a swarm of N interacting particles,
as well as for a single extended body that can be conceptually broken up into
N smaller units.



Strong & Weak forms of Newton III

First consider the force f,5 that particle 3 exerts on particle a:
Newton’s 111" Law is

f.5 = —13a

e.g., the forces exerted by particles a and (3
are equal in magnitude and opposite in direction.
This is sometimes referred to as the weak form of Newton III.

The strong form of Newton III reads:
the forces f,3 are also parallel to the line connecting o and f3.

The additional assumption is generally true in mechanical systems

(ie, the physics of solid bodies).

However it is not true for all forces, such as the magnetic force F = gv x B.
Such forces will not be considered here.

We will use the weak and strong forms of Newton III below as we derive
various conservation theorems for N-body systems.

Center of Mass

The center of mass (CoM) R for a system of N discrete particles is

1 N
R = M;mara

N
where M = Zma — total mass
a=1

To compute R for a continuous body,

d
dR = rﬁm = contribution by small mass dm at r

1
SO R—/dR—M/rdm
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Example 9.1:

d}u

Fig. 9-3.

Calculate R for a hemisphere of mass M, radius a, and
uniform density p = 3M /2mra>:

first place the origin the center of the hemisphere’s base and set

R

so R,

similarly R,

however

R,

R.X+ Ry + R.Z
1
i / xdm where dm = pdxdydz

1 a
M/@xdaz/dy/dz
= 0

0

1 a

—/ zdm where dm = pﬂ(a2 — zQ)dz
M

% 0 (a*z — 2°)dz

3 (1 1\ , 3
— [ ——=]a"==-a
203 \2 4 8
3
R = -az
S

Now add the lower hemisphere to form a complete sphere. What is R?
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Now derive a number of conservation theorems for systems of N particles:
conservation of P, L, and E.

N—-body forces

Let f,3 = the force on particle a due to particle 3
N

so f, = Z f,3 = the total force on o due to all other p’s 3.
B=1

= the net internal force on «

note that f,, = 0 andf,3 = —f3, by NIII

also let F;, = the external force on a—gravity, for example

the total force on ais = £, + F§,

Ind

Now recall that Newton’s I[I"* Law, p = F, ie,

Ija - mai:oz — fa + F;

d2
SO @mara = Zfaﬁ + F¢,
B=1
2 Y N N N
Now sum over all particles a: 5] Z Mala = Z Z fo5+ Z F¢
a=1 a=1 p=1 a=1

and note that the LHS = MR



Now consider the first sum on the right,
which is the system’s total internal force F':

D ST 9 91
a 0 a f

= — Z Z f,s upon swapping the dummy indices av <= 3

« B
f— —:E‘2
= F' = 0 the internal forces sum to zero (due to weak Newton III)

thus MR = F¢
N

where F¢ = Z F?, sum of all external forces on all particles

a=1

This is result I: The system’s CoM R evolves as if it were a single body
of mass M under the influence of the total external force F€.

Conservation of Linear Momentum P

total momentum P = Zmafa
«

d )
= EZmara:MR
thus P = MR = F¢

II. the system’s total linear momentum P s the same as if the system
were a single body of mass M located at the CoM R.

III. P is conserved when F¢ = 0.



Problem 9-6

Two particles of mass m start at the origin. Particle 1 feels zero force, while
particle 2 feels Fy = F'X.

What are the particle’s motions & the CoM motion?
We anticipate z1(t) = 0 and z5(t) = Ft*/2m so
Toon(t) = 19/2 = Ft?/4m

Confirm:

MRe,yy = F=Fx

. F
SO TooM = T—
2m
. F't
and ooy = —
2m

Ft*? 1

and Tooy = — = §x2 as expected



Angular Momentum L

Write each particle’s position r, = R + rf, so that
r/, = distance of particle « from the CoM:

Fig. 9-5.

since L, = r, X p, = particle a’a angular momentum,

total ang’ mom’is L = Z r, X myr,
— za:ma(R+ r') x (R+7)
= za:ma(Rx R+Rxi +r, xR+r, xi)
Now show that the middle terms (MTs) sum to zero:
MTs = R X % (20; mar;> + (20; mar;> x R
but Y mer, = Y ma(ra—R)=MR - MR =0

= MTs =0
and L = R><P+Zr;><p; where pl, = m,r/,
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IV. The system’s total angular momentum = angular momentum of
the CoM about the origin (R x P) plus the angular momentum of the
system about the CoM (> rl x pL).

L conservation
Particle a’s angular momentum L, = r, X p,, so its time rate-of—change is

L, = m,r, X1, +myr, XTI,

= r, X Po Where p,= Zfag + F¢,
B=1

N
=TI, X Z fag + FZ
=1

The total rate—of—change of the system’s angular momentum is then

S A R DS AN -
a 5

(%

Now show that the first term (FT) on the right is zero:

N N
FT = ) ) 1o X fa

a=1 p=1

f#a
= 2.2 Nus
o f#a
where N,g = ra x 5 = torque on «a due to (8
N N
now note that Z Z Nuog = Z Z Nog+ Ngo) = Z(Nag + Nga)
a=1 p=1 a=1 f=a+1 a<f

B#a

Confirm the above for an N = 3 system:
LHS = Nijs+ Niz+ Nog + Nog + N3jp + N3y
RHS = (N12 + NQl) + (N13 + Ngl) + (N23 + Ngg) =LHS \/



To formally prove that the above is

> Nog = ) (Nog+Nga),

fFa a<f

note that the LHS and RHS are the same sums over the non-diagonal matrix
whose elements are N,5. Then

FT = Z(Naﬁ + Nﬁa)

a<f(

= Z(I‘a X faﬁ + I3 X fﬁa)

a<f(

= Z(ra — 1) x f,5 since f,5 = —1f3,

= Zr(w X fag

a<f(

where r,3 = r, — rg = points from 3 to a.

Now invoke the strong form of Newton III:

that f,3 points along rop = F1' = 0.

This indicates that the total internal torque, >, > 5., Naog =0,
ie, the internal torques do not alter the system’s L.

The total rate—of—change of the system’s angular momentum is simply the
sum of all the external torques N¢, = r, X F'¢ that are due to external forces:

L = ZraXFZ:ZNZENe

A

V. if the torque about some given axis X 1s zero, te. N°-x =0,
then L - x = constant.

VI. The total internal torques sum to zero when the internal forces are
central, ie, £,3 = —f3,. In this case only external torques can alter the
system’s angular momentum.



A simple example

Let two masses m, which are attached to the unextended ends of a spring
having a natural length b, rest on a frictionless plane. At time t = 0, give
one mass a sudden velocity kick V perpendicular to the spring while giving
the other mass a velocity kick —2V.

Where is the CoM?

What is the motion of the CoM?
the total momentum is P = (—mV 4+ 2mV)% = mV& = MR = 2mR

= 1comstant
1
What is the system’s total L?
L = myr; X vi + mers X vo
1 1
1
= émeZ +mbV'z
3
= —mbV'7Z
2m v/

The total energy E at time ¢t = 0 is

E =T+U=T

1 1 5
— 5mV2 + 5m(2V)2 = §mV2 which is conserved
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Energy conservation

First look at the system’s kinetic energy 1':
L,
T = Z émari
o
And write the particles positions r,, and velocities 1, as:

r, = R+71)
and ¥, = R+1

where r/, and 1/, are o’a position and velocity relative to the CoM.

1 . . .
thus 1" = Z §ma(R2 +2R -1, + r’i)

. o d /
note the middle term = R-E Ea meal o =0
so 1T = 1MR2+ g 1m 1:’2
2 —2 @

VII: the system’s total KE s the sum of the KE due to the
motion of the CoM + the KE due to internal motions.
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Now the system’s total potential energy U:

Section 9.5 shows that the total potential energy U is the sum of the potential
due to the external forces plus the potential due to the particles’ interactions:

ZU”Z Z

oa=1 f=a+1

Note that the right sum is not over all particles o & 3
(which would overcounting the internal potential energy!).

As usual, this is true for a conservative system, which means that these
forces can be written in terms of potential energies that depend only on the
coordinates r,, and not on velocities r,, or time ¢.

The total force F., on particle v is then

F, = -V.U=-V, ZU€+Z Z

a=1 f=a+1

where V., = gradient with respect to r,
ex: Vi = 2% + -2y + -2 7 in Cartesian coordinates).
8x3 8y 0z3

The V., operator selects the o = v and 3 = «y terms from these sums:

F, = VUGVZ ﬁvz

B=vy+1

— _V’YUs -V, Z Uéﬁ since UOZ;7 — Uéa by Newton I1I
B#y
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Suppose we have a 3—particle system.
What is the total force on particle v = 27

Fy = —VyUs — Vo Us,
B2
= F§—|—f21—|—f23

VIII. The system’s total energy EE =T + U 1s a constant
for a conservative system.

This is rigorously proven in Section 9.5, but we will not do this here since
the proof is similar to that for a one—particle system we did in Chapter 2.
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