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Chapter 9: Dynamics of systems of particles

To date we have focused on the motion of a single particle

(ex: the motion of a block on an inclined plane, the plane pendulum, etc.).

We also examined the 2–body central force problem by recasting it as

1–body problem.

Now we will consider N–body systems for the remainder of this course.

Our first task is to derive the relevant conservation theorems for systems of

N particles (as we did earlier for N=1 systems).

Note that these results will be true for a swarm of N interacting particles,

as well as for a single extended body that can be conceptually broken up into

N smaller units.
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Strong & Weak forms of Newton III

First consider the force fαβ that particle β exerts on particle α:

Newton’s IIIrd Law is

fαβ = −fβα

e.g., the forces exerted by particles α and β

are equal in magnitude and opposite in direction.

This is sometimes referred to as the weak form of Newton III.

The strong form of Newton III reads:

the forces fαβ are also parallel to the line connecting α and β.

The additional assumption is generally true in mechanical systems

(ie, the physics of solid bodies).

However it is not true for all forces, such as the magnetic force F = qv ×B.

Such forces will not be considered here.

We will use the weak and strong forms of Newton III below as we derive

various conservation theorems for N–body systems.

Center of Mass

The center of mass (CoM) R for a system of N discrete particles is

R =
1

M

N
∑

α=1

mαrα

where M =
N
∑

α=1

mα = total mass

To compute R for a continuous body,

dR = r
dm

M
= contribution by small mass dm at r

so R =

∫

dR =
1

M

∫

rdm
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Fig. 9–3.

Example 9.1:

Calculate R for a hemisphere of mass M , radius a, and

uniform density ρ = 3M/2πa3:

first place the origin the center of the hemisphere’s base and set

R = Rxx̂ + Ryŷ + Rzẑ

so Rx =
1

M

∫

xdm where dm = ρdxdydx

=
1

M

∫ a

−a

xdx

∫

dy

∫

dz

= 0

similarly Ry = 0

however Rz =
1

M

∫ a

0

zdm where dm = ρπ(a2 − z2)dz

=
ρπ

M

∫ a

0

(a2z − z3)dz

=
3

2a3

(

1

2
− 1

4

)

a4 =
3

8
a

⇒ R =
3

8
aẑ

Now add the lower hemisphere to form a complete sphere. What is R?
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Now derive a number of conservation theorems for systems of N particles:

conservation of P, L, and E.

N–body forces

Let fαβ = the force on particle α due to particle β

so fα =
N
∑

β=1

fαβ = the total force on α due to all other p’s β.

≡ the net internal force on α

note that fαα = 0 and fαβ = −fβα by NIII

also let Fe
α = the external force on α—gravity, for example

the total force on α is = fα + Fe
α

Now recall that Newton’s IInd Law, ṗ = F, ie,

ṗα = mαr̈α = fα + Fe
α

so
d2

dt2
mαrα =

N
∑

β=1

fαβ + Fe
α

Now sum over all particles α:
d2

dt2

N
∑

α=1

mαrα =

N
∑

α=1

N
∑

β=1

fαβ +

N
∑

α=1

Fe
α

and note that the LHS = MR̈
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Now consider the first sum on the right,

which is the system’s total internal force Fi:

Fi ≡
∑

α

∑

β

fαβ = −
∑

α

∑

β

fβα

= −
∑

α

∑

β

fαβ upon swapping the dummy indices α ↔ β

= −Fi

⇒ Fi = 0 the internal forces sum to zero (due to weak Newton III)

thus MR̈ = Fe

where Fe =
N
∑

α=1

Fe
α sum of all external forces on all particles

This is result I: The system’s CoM R evolves as if it were a single body

of mass M under the influence of the total external force Fe.

Conservation of Linear Momentum P

total momentum P =
∑

α

mαṙα

=
d

dt

∑

α

mαrα = MṘ

thus Ṗ = MR̈ = Fe

II. the system’s total linear momentum P is the same as if the system

were a single body of mass M located at the CoM R.

III. P is conserved when Fe = 0.
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Problem 9–6

Two particles of mass m start at the origin. Particle 1 feels zero force, while

particle 2 feels F2 = F x̂.

What are the particle’s motions & the CoM motion?

We anticipate x1(t) = 0 and x2(t) = Ft2/2m so

xCoM(t) = x2/2 = Ft2/4m

Confirm:

MR̈CoM = F = F x̂

so ẍCoM =
F

2m

and ẋCoM =
Ft

2m

and xCoM =
Ft2

4m
=

1

2
x2 as expected
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Angular Momentum L

Write each particle’s position rα = R + r′α so that

r′α = distance of particle α from the CoM:

Fig. 9–5.

since Lα = rα × pα = particle α’a angular momentum,

total ang’ mom’ is L =
∑

α

rα × mαṙα

=
∑

α

mα(R + r′α) × (Ṙ + ṙ′α)

=
∑

α

mα(R × Ṙ + R × ṙ′α + r′α × Ṙ + r′α × ṙ′α)

Now show that the middle terms (MTs) sum to zero:

MTs = R × d

dt

(

∑

α

mαr
′
α

)

+

(

∑

α

mαr
′
α

)

× Ṙ

but
∑

α

mαr
′
α =

∑

α

mα(rα − R) = MR − MR = 0

⇒ MTs = 0

and L = R × P +
∑

α

r′α × p′
α where p′

α = mαṙ
′
α
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IV. The system’s total angular momentum = angular momentum of

the CoM about the origin (R × P) plus the angular momentum of the

system about the CoM (
∑

α r′α × p′
α).

L conservation

Particle α’s angular momentum Lα = rα ×pα, so its time rate–of–change is

L̇α = mαṙα × ṙα + mαrα × r̈α

= rα × ṗα where ṗα =
N
∑

β=1

fαβ + Fe
α

= rα ×





N
∑

β=1

fαβ + Fe
α





The total rate–of–change of the system’s angular momentum is then

L̇ =
∑

α

L̇α =
∑

α

rα ×





∑

β

fαβ + Fe
α





Now show that the first term (FT) on the right is zero:

FT =
N
∑

α=1

N
∑

β=1

β 6=α

rα × fαβ

=
∑

α

∑

β 6=α

Nαβ

where Nαβ = rα × fαβ = torque on α due to β

now note that
N
∑

α=1

N
∑

β=1

β 6=α

Nαβ =
N
∑

α=1

N
∑

β=α+1

(Nαβ + Nβα) =
∑

α<β

(Nαβ + Nβα)

Confirm the above for an N = 3 system:

LHS = N12 + N13 + N21 + N23 + N31 + N32

RHS = (N12 + N21) + (N13 + N31) + (N23 + N32) = LHS
√
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To formally prove that the above is
∑

β 6=α

Nαβ =
∑

α<β

(Nαβ + Nβα),

note that the LHS and RHS are the same sums over the non–diagonal matrix

whose elements are Nαβ. Then

FT =
∑

α<β

(Nαβ + Nβα)

=
∑

α<β

(rα × fαβ + rβ × fβα)

=
∑

α<β

(rα − rβ) × fαβ since fαβ = −fβα

=
∑

α<β

rαβ × fαβ

where rαβ ≡ rα − rβ = points from β to α.

Now invoke the strong form of Newton III:

that fαβ points along rαβ ⇒ FT = 0.

This indicates that the total internal torque,
∑

α

∑

β 6=α Nαβ = 0,

ie, the internal torques do not alter the system’s L.

The total rate–of–change of the system’s angular momentum is simply the

sum of all the external torques Ne
α = rα×Fe

α that are due to external forces:

L̇ =
∑

α

rα × Fe
α =

∑

α

Ne
α ≡ Ne

V. if the torque about some given axis x̂ is zero, ie. Ne · x̂ = 0,

then L · x̂ = constant.

VI. The total internal torques sum to zero when the internal forces are

central, ie, fαβ = −fβα. In this case only external torques can alter the

system’s angular momentum.
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A simple example

Let two masses m, which are attached to the unextended ends of a spring

having a natural length b, rest on a frictionless plane. At time t = 0, give

one mass a sudden velocity kick V perpendicular to the spring while giving

the other mass a velocity kick −2V.

Where is the CoM?

What is the motion of the CoM?

the total momentum is P = (−mV + 2mV )x̂ = mV x̂ = M Ṙ = 2mṘ

= constant

⇒ Ṙ =
1

2
V x̂

and R(t) =
1

2
V tx̂

What is the system’s total L?

L = m1r1 × v1 + m2r2 × v2

= m
1

2
bŷ × (−V x̂) − m

1

2
bŷ × (2V x̂)

=
1

2
mbV ẑ + mbV ẑ

=
3

2
mbV ẑ

The total energy E at time t = 0 is

E = T + U = T

=
1

2
mV 2 +

1

2
m(2V )2 =

5

2
mV 2 which is conserved
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Energy conservation

First look at the system’s kinetic energy T :

T =
∑

α

1

2
mαṙ

2
α

And write the particles positions rα and velocities ṙα as:

rα = R + r′α
and ṙα = Ṙ + ṙ′α

where r′α and ṙ′α are α’a position and velocity relative to the CoM.

thus T =
∑

α

1

2
mα(Ṙ2 + 2Ṙ · ṙ′α + ṙ′

2

α)

note the middle term = Ṙ · d

dt

∑

α

mαr
′
α = 0

so T =
1

2
MṘ2 +

∑

α

1

2
mαṙ′

2

α

VII: the system’s total KE is the sum of the KE due to the

motion of the CoM + the KE due to internal motions.
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Now the system’s total potential energy U :

Section 9.5 shows that the total potential energy U is the sum of the potential

due to the external forces plus the potential due to the particles’ interactions:

U =
N
∑

α=1

U e
α +

N
∑

α=1

N
∑

β=α+1

U i
αβ

Note that the right sum is not over all particles α & β

(which would overcounting the internal potential energy!).

As usual, this is true for a conservative system, which means that these

forces can be written in terms of potential energies that depend only on the

coordinates rα, and not on velocities ṙα or time t.

The total force Fγ on particle γ is then

Fγ = −∇γU = −∇γ





N
∑

α=1

U e
α +

N
∑

α=1

N
∑

β=α+1

U i
αβ





where ∇γ = gradient with respect to rγ

(ex: ∇3 = ∂
∂x3

x̂ + ∂
∂y3

ŷ + ∂
∂z3

ẑ in Cartesian coordinates).

The ∇γ operator selects the α = γ and β = γ terms from these sums:

Fγ = −∇γU
e
γ −∇γ

N
∑

β=γ+1

U i
γβ −∇γ

γ−1
∑

α=1

U i
αγ

= −∇γU
e
γ −∇γ

N
∑

β 6=γ

U i
γβ since U i

αγ = U i
γα by Newton III
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Suppose we have a 3–particle system.

What is the total force on particle γ = 2?

F2 = −∇2U
e
2 −∇2

∑

β 6=2

U i
2β

= Fe
2 + f21 + f23

VIII. The system’s total energy E = T + U is a constant

for a conservative system.

This is rigorously proven in Section 9.5, but we will not do this here since

the proof is similar to that for a one–particle system we did in Chapter 2.
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