The Kuiper Belt, and the Early Evolution of the Outer Solar System

Joseph M. Hahn

Saint Mary's University—Institute for Computational Astrophysics (ICA)

What is the Kuiper Belt?

- a vast swarm of giant comets orbiting just beyond Neptune
 - debris that failed to coalesce into another planet
- nomenclature isn't settled: Kuiper Belt, Edgeworth–Kuiper Belt, Trans–Neptunian Belt, etc.
- members are: KBOs, EKOs, TNOs, etc.

1992 QB1: the first known KBO?

from David Jewitt's website

- discovered in 1992
 by David Jewitt & Jane Luu
- $\bullet \ m=23 \text{ at } r\sim 45 \text{ AU}$
- apparent motion of 3"/hour on sky due to parallax from *Earth's* orbital motion

• ...or was the first KBO discovered in 1930 by Clyde Tombaugh?

What does a KBO look like?

from CICLOPS: Cassini Imaging page.

- KBOs are distant, ice-rich debris that were left over from when Solar System first formed
- likely heavily cratered due to impacts w/other KBOs,
 - eperhaps like Phoebe?
 - which is NOT a KBO...
- nonetheless, this pic' of Phoebe might be a representative of a typical KBO

Kuiper Belt Statistics

• ~ 1000 known KBOs

- observable population has $20 \lesssim D \lesssim 1000$ km, masses $< \frac{1}{5}$ M_{moon}
- estimated population: $N(D>100{\rm km})\sim 200,000$ total mass $M\sim 0.02{\rm M}_\oplus$

• $\sim 10\text{--}100 imes$ asteroid belt

from the Minor Planet Center

Formation of planets, comets, asteroids...and the Kuiper Belt

- Planet formation is a by-product of star formation
- first, an interstellar cloud of gas & dust collapses due to its gravitational self-attraction
 - $\sim 99\%$ of the cloud forms young Sun
 - $-\sim 1\%$ of the cloud forms a disk orbiting the Sun, the solar nebula

collapsing cloud forms star + disk

- dust grains are concentrated in the solar nebula disk
 - dust grains collide & stick to form larger objects
 - over time, dust grow, form planetesimals (the building blocks of the planets)

cartoon showing growing planetesimals

- regions where $r \lesssim 5$ AU, the nebula temperature $T \gtrsim 200$ K (about -70 C)
 - these planetesimals are rock-rich, ice-poor (too warm!)
 - * they will later collide & form the rocky terrestrial planets (M,V,E,M)
 - * any left-over planetesimals will become asteroids that live at $r\sim 3$ AU
- where $r\gtrsim 5$ AU & $T\lesssim 200$ K
 - these cooler planetesimals are ice-rich
 - * they will form the cores of the gas giant planets (J,S,U,N)
 - * any left-over planetesimals will become comets in Kuiper Belt & Oort Cloud₇

KBO Accretion models

Hubble Space Telescope image by Krist et al.

- KBO accretion models tell us:
 - the KBO 'seeds' were initially in nearly circular orbits
 - you need $\sim 30 M_{\oplus}$ of matter in order to form Pluto-sized KBOs in 4.5 billion years
- current KB mass is $\sim 0.02 \text{M}_\oplus$
 - the KB's mass was depleted by factor of $\times 1500!$
- depletion due to collisions among KBOs?
 - collisions generate dust
 - dust is removed by starlight
 - radiation pressure or PR drag

KBO Orbits—anything but circular!

orbits from Minor Plant Center.

- accretion models predict nearly circular orbits, ie, $e \simeq 0$
- but astronomer find KBOs in orbits with eccentricities of $\sim 0.1-0.3$
- something has disturbed the Kuiper Belt since formation!
- note KBOs at Neptune's 3:2
 - site where a KBO gets
 'kicked' every 330 years
 - e's get pumped up here
 - KBOs were 'parked' here
 - possibly due to planet migration

The 3:2—Evidence for Planet Migration?

Nbody simulations show that as Neptune migrates outwards,

- Neptune's resonances can capture KBOs
 - this drags the captured KBOs outwards
 - pumps up their eccentricities e
- astronomers have detected many KBOs at Neptune's 3:2, 5:3, 2:1, 5:2, etc, which suggests that Neptune's orbit did expand outwards

How far did Neptune migrate?

- e-pumping at 3:2 varies with Neptune's migration distance Δa
- achieving $e \sim 0.33$ at 3:2 requires Neptune migrating $\Delta a \simeq 9$ AU

Why would the giant planets migrate?

from Hahn & Malhotra (1999)

- cores of giant planets formed within a planetesimal disk
- planet—formation was likely not 100% efficient
 - residual planetesimal debris is left over
- recently–formed planets scatter the planetesimal debris, exchange L with planetesimal disk
- Nbody simulations (Fernandez & Ip 1984, Hahn & Malhotra 1999, Gomes, Morby, Levison 2004) show planets evolve away from each other, ie, Jupiter inwards, Neptune outwards
- driving Neptune $\Delta a_{Nep} \simeq 9$ AU requires debris mass $M_D \sim 30 M_{\oplus}$, enough to build ~ 2 more Neptune's...planet formation was quite ineffi cient

Centaurs, and the origin of Short Period Comets

- Centaurs have $a < a_{Neptune}$ (eg, Pholus, Chiron, Nessus, etc)
- often found in KB surveys, due to their proximity to Sun
- Centaurs are *escapees* from the Kuiper Belt
 - model shows they pop out of resonances,
 - get scattered about Solar
 System by giant planets

• some Centaurs get tossed within $r \leq 2$ AU, where they become visible as an active, short-period comet (aka, a Jupiter-family comet)

What is a comet?

- a comet is an icy planetesimal, eg, a dirty snowball, composed of:
- mostly water ice + trace CHON:
 - CO, CO₂, CH₃OH, HCN, NH₃,
 ... and dust

Comet Wild–2 photographed by Stardust

Why do comets have tails?

- comets travel in wide, looping orbits about the Sun
- when $r \leq 2$ AU of Sun, their icy surfaces sublimate (eg., boil off)
 - releases gas & dust into coma,
 a $r \sim 10^5$ km cloud
 - solar wind & radiation sweeps gas & dust into tail $\ell \sim 10^{6 \text{ to 7}} \text{ km}$
 - all this from a comet nucleus with diameter 1–10 km
- most comets reside at r > 2 AU, where they are inactive, so they are dark and unseen...

if Centaurs/Short–Period Comets come from the Kuiper Belt...

where do Oort Cloud comets come from?

- from within the donut hole...
 - they probably formed among the giant planets
 - who accreted some of the planetesimal debris there
 - but also flung icy planetesimals into wide orbits about the Sun

The Oort Cloud is huge

• Oort cloud comets can travel as far out as $r \sim 50,000$ AU, which is about 25% of distance to nearest star

Do other stars have Kuiper Belts?

Short dust lifetimes imply unseen KBOs!

- star HD 141569
- circumstellar dust is quickly destroyed, perhaps in millions of years?
 - due to collisions, radiation pressure, PR drag
- dust lifetimes are \ll age of star

HST image by M. Clampin

- must be an unseen source of dust orbiting star
 - most likely culprit: KBOs that collide & generate dust

AB Aurigae Disk PRC99-21 • STScl OPO • C. Grady (NOAO at NASA Goddard Space Flight Center) and NASA

Circumstellar Debris Disks Hubble Space Telescope • ACS HRC

NASA, ESA, J. Krist (STScl/JPL), D.R. Ardila (JHU), D.A. Golimowski (JHU), M. Clampin (NASA/Goddard), H. Ford (JHU), G. Hartig (STScl), G. Illingworth (UCO-Lick) and the ACS Science Team

STScI-PRC04-33a

Summary

- the Kuiper Belt is a debris disk a relic that was left–over from when the giant planets formed
- this Belt is interesting, since it appears to preserve evidence of planet migration
 - the KBOs trapped at Neptune's resonances suggest that Neptune's orbit expanded $\sim 30\%$
- the Kuiper Belt is also the source of the short-period comets, which are samples of the Solar System's outer edge
 - interestingly, long-period comets from the Oort Cloud probably formed closer to the Sun that the short-period comets
- circumstellar dust-disks have been detected in orbit about many nearby stars
 - these disks are often interpreted as evidence for extra-solar Kuiper Belts
 - the warps & gaps seen in these disks also suggest the presence of unseen planets orbiting within